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1|Introduction 

Disease diagnosis is essential for effective patient management and improved clinical outcomes. Clinicians 

traditionally rely on manual interpretation of laboratory tests and diagnostic imaging to detect diseases. 
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Abstract 
Accurate disease diagnosis enhances effective patient management; however, manual interpretation of complex biomedical data 

is time-consuming and vulnerable to error. Artificial Intelligence (AI) systems, particularly Machine Learning (ML) models, can 

automatically learn complex patterns from high-dimensional clinical and imaging data. The predictive performance of these 

methods depends critically on proper hyperparameter tuning. This study introduces a framework that integrates nonlinear feature 

extraction, classification, and efficient optimisation. First, kernel principal component analysis with a radial basis function kernel 

reduces dimensionality while preserving 95% of the variance. Second, a Multilayer Perceptron (MLP) learns to predict disease 

status. Finally, a modified Multiprocessing Interface Genetic Algorithm (MIGA) optimises MLP hyperparameters in parallel over 

ten generations. We evaluated this approach on three datasets: The Wisconsin Diagnostic Breast Cancer dataset, the Parkinson’s 

Telemonitoring dataset, and the Chronic Kidney Disease (CKD) dataset. The MLP tuned by the MIGA achieved the best accuracy 

of 99.12% for breast cancer, 94.87% for Parkinson’s Disease (PD), and 100% for CKD. These results outperform those of other 

methods, such as grid search, random search, and Bayesian optimisation. Compared to a standard Genetic Algorithm (GA), Kernel 

Principal Component Analysis (Kernel PCA) revealed nonlinear relationships that improved classification, and the MIGA’s 

parallel fitness evaluations reduced the tuning time by approximately 60%. The GA incurs a high computational cost due to the 

sequential nature of fitness evaluations. Still, our MIGA parallelizes this step, significantly reducing the tuning time and steering 

the MLP toward the best accuracy scores of 99.12%, 94.87%, and 100% for breast cancer, Parkinson's, and CKD, respectively. 

The built-in graphical user interface then enables clinicians to load data, reduce dimensions, tune hyperparameters, and run 

predictions without writing code, paving the way for rapid and real-world adoption.  

Keywords: Multilayer perceptron, Multiprocessing interface genetic algorithm, Hyperparameter optimization, Kernel principal 
component analysis, Parallel processing. 
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  However, this approach is time-consuming and often incapable of capturing the full complexity of high-

dimensional biomedical data [1]. Artificial Intelligence (AI) is a branch of computer science that focuses on 

creating systems capable of performing tasks that typically require human intelligence. Machine Learning (ML) 

trains algorithms to learn from data and improve their performance without explicit programming [2]. By 

applying optimization techniques to tune model parameters, AI-driven frameworks automatically extract 

intricate features from clinical and imaging data, thereby enhancing the predictive accuracy and consistency 

for diseases [3]. However, the field of AI continues to evolve from rigid rule-based automation to systems 

that imitate human reasoning, perception, and foresight, allowing machines to take autonomous actions in 

complex environments. These advancements demonstrate that AI is not merely a tool for efficiency but also 

a transformative enabler that augments human capabilities across daily life and industry. Hyperparameter 

tuning is essential in ML because it directly affects model accuracy, generalization, and stability by determining 

how the learning algorithm behaves during training [4]. Proper tuning helps handle underfitting and 

overfitting by optimizing parameters or model complexity [5]. Without tuning, models often fail to reach their 

full predictive potential. 

Traditional methods, such as grid search and random search, exhaustively evaluate all possible combinations, 

making them computationally expensive and inefficient in high-dimensional spaces —a problem known as 

the curse of dimensionality [6]. These limitations impose more adaptive methods, such as Genetic Algorithms 

(GAs), that can intelligently search for better hyperparameter combinations. The GA is increasingly used for 

hyperparameter tuning in ML due to its ability to explore large, complex, and nonlinear search spaces more 

efficiently than traditional methods, such as grid or random search. GAs mimic the process of natural 

selection by encoding hyperparameters as chromosomes, evaluating their performance (Fitness), and 

iteratively improving them through genetic operators such as selection, crossover, and mutation [7]. This 

evolutionary process enables the GA to avoid local minima and converge toward globally optimal solutions, 

making it particularly useful for high-dimensional and nonconvex tuning problems. Unlike traditional 

techniques, which are static and uninformed, the GA is adaptive and uses past evaluations to guide future 

searches, reducing redundant trials and improving convergence speed. While the GA is effective for exploring 

large search spaces, it often suffers from slow convergence and high computational cost, primarily when 

complex models are evaluated over many generations [7]. Additionally, its performance is sensitive to the 

tuning of GA-specific parameters such as population size, crossover, and mutation rates, which can lead to 

premature convergence or suboptimal results if not well-balanced [7]. This work aims to propose a predictive 

model for disease prediction via an optimized ML model with an improved GA with parallel fitness evaluation 

called the Multiprocessing Interface Genetic Algorithm (MIGA) to increase disease prediction and tuning 

efficiency. 

2|Literature Review 

Recent works have shown the effectiveness of the GA in optimizing ML models by addressing the limitations 

of traditional hyperparameter tuning methods. Rodrigues et al. [8] proposed a hybrid model combining a 

ResNet-50v2 CNN with a GA for classifying Acute Lymphoblastic Leukemia (ALL) from microscopy images. 

The GA was used to fine-tune the Convolutional Neural Network (CNN) hyperparameters, resulting in a 

classification accuracy of 98.46%, which outperformed both the random search and Bayesian optimization 

approaches. Kaur et al. [9] developed a GA-aided hyperparameter optimization framework combined with 

an ensemble learning model to predict respiratory diseases via clinical data. Their methodology also 

incorporated SHAP-based explainable AI to interpret model predictions. The GA-optimized AdaBoost 

classifier achieved the highest accuracy among all the models evaluated, showing the efficacy of GAs in tuning 

complex classifiers and reducing human involvement in parameter selection. In the energy sector, Liu et al. 

[10] applied a GA to enhance the performance of a Random Forest (RF) model for predicting grid faults. By 

selecting relevant meteorological features and tuning the model hyperparameters with a GA, the proposed 

method improved the prediction accuracy by 14.77% over that of standard RF models, illustrating the 

adaptability of GAs in real-time fault prediction under environmental variability. 
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  Furthermore, Guido et al. [11] introduced a multiobjective GA approach for tuning Support Vector Machine 

(SVM) hyperparameters in imbalanced datasets. Their model, which incorporates decision trees to accelerate 

GA evaluations, significantly reduces the computational time while improving balanced accuracy metrics such 

as the G-mean, which are vital for healthcare-related classification tasks. Building on constrained optimization 

techniques, El-Hassani et al. [12] proposed a novel framework named MLPRGA+5, aimed at configuring 

Multilayer Perceptron (MLP) networks through real-coded GAs. The work implemented advanced genetic 

operators such as tournament selection with elitism, Simulated Binary Crossover (SBX), and Polynomial 

Mutation (PM). The model’s efficiency was validated on four UCI datasets, where MLPRGA+5 achieved 

higher accuracy and reduced network complexity compared to traditional methods, confirming the robustness 

of the evolutionary design in practical neural network tuning. El-Hassani et al. [12] introduced an ensemble 

model (EGACNN) that stacks a CNN with a GA to optimize hyperparameters such as the dropout rate, 

batch size, and learning rate. Their method achieved 99.91% accuracy on MNIST, outperforming the classical 

CNN and other ensemble models, thereby validating the robustness of GAs in fine-tuning deep neural 

networks for image classification tasks. Ranga et al. [13] optimized an MLP using a GA to predict Chronic 

Kidney Disease (CKD) and achieved better accuracy scores of 98.34% and 98.54% for the training and testing 

processes, respectively. 

3|Methodology 

Fig. 1. Proposed framework. 
 

3.1|Dataset 

3.1.1|Chronic kidney disease 

CKD is also called Chronic Renal Failure (CRF). CKD is a clinical syndrome characterized by permanent 

structural and functional damage to the kidneys that persists for at least three months, reducing their ability 

to filter metabolic waste, regulate fluid-electrolyte balance, and control blood pressure [14]. It typically 

develops gradually and remains unnoticed until approximately 25% of renal function is lost. In adults, CKD 

is diagnosed when the estimated Glomerular Filtration Rate (eGFR) falls below 60 mL/min/1.73 m² or when 

the eGFR is ≥ 60 mL/min/1.73 m² in the presence of markers of kidney damage, such as albuminuria over 

three months or more [14]. Globally, CKD affects more than 800 million individuals and is projected to rank 

among the five leading causes of death by 2040, highlighting the urgent need for accurate early detection and 

predictive modelling approaches [15]. The CKD dataset used in the study consists of 400 instances with 25 
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  input features and 1 target feature, which is referred to as "Classification". The dataset has a total of 1009 

missing values [16]. 

3.1.2| Parkinson's disease 

Parkinson’s Disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopamine-

producing neurons in the substantia nigra of the midbrain, resulting in hallmark motor symptoms such as 

resting tremor, bradykinesia, rigidity, and postural instability [17]. Globally, PD affects an estimated 7–10 

million people, with the incidence rising markedly after age 60 and a male-to-female prevalence ratio of 

approximately 1.5:1 [18]. Early in its course, PD often presents with subtle voice- and speech-based changes, 

and dysphonia is detectable through sustained phonation before overt motor signs appear [19]. Diagnosis 

remains clinical and is based on established criteria, supplemented by neuroimaging and biomarkers. 

However, the insidious onset and overlapping features underscore the need for robust early-detection models 

trained on specialized PD datasets. The Parkinson dataset used in the study is obtained from the UCI ML 

repository, originally collected at Oxford Parkision's Disease Centre. The dataset comprises a total of 195 

records with 23 features and one target feature, where the target feature is "Status". Notably, the dataset also 

contains no missing values [20]. 

3.1.3|Breast cancer disease 

Breast cancer is caused by the uncontrolled proliferation of epithelial cells within breast tissue, resulting in 

the formation of benign or malignant tumours [21]. Malignant lesions are defined by their capacity to invade 

adjacent stroma and disseminate to distant organs via lymphatic or hematogenous routes, which critically 

worsens prognosis. Mammography remains the state-of-the-art method for early detection; radiographic 

assessment focuses on lesion morphology, margin characteristics, and tissue density to distinguish benign 

from malignant findings [22]. Recent diagnostic methods integrate Deep Learning (DL) techniques to 

enhance classification performance on large mammographic datasets [23]. The breast cancer dataset used in 

this study was downloaded from the UCI ML repository. The dataset is from the University of Wisconsin 

Hospital and comprises 569 instances with 32 features, including 31 input features and one target feature. 

The target feature is "Diagnosis", and the dataset has no missing values [24]. 

3.2|Data Preprocessing 

The study utilized three datasets: only the CKD dataset contained missing values, which were handled via K-

Nearest Neighbors (KNN) imputation. The categorical features were encoded using one-hot encoding. The 

dataset was then randomly split into training and testing sets, with 80% and 20% allocated to each, 

respectively. 

3.3|Kernel-Based Principal Component Analysis 

Kernel Principal Component Analysis (Kernel PCA) is a type of PCA that extends PCA by mapping data into 

a high-dimensional feature space via a nonlinear kernel function, such as a radial basis, cosine, sigmoid or 

polynomial, and then computes principal components in that space, which allows the capture of complex, 

nonlinear structures that linear PCA cannot detect [3]. This method, therefore, provides more effective 

dimensionality reduction for downstream tasks such as disease classification. The study used the radial basis 

function kernel principal component to identify the best component that explained at least 95% of the total 

variance. 

3.4|Multilayer Perceptron 

A MLP is a type of feed-forward Artificial Neural Network (ANN) comprising an input layer, one or more 

hidden layers of interconnected neurons, and an output layer; each neuron computes a weighted sum of its 

inputs plus a bias and applies a nonlinear activation function, enabling the network to approximate complex, 

nonlinear mappings through gradient-based optimization of its parameters without any feedback loops [25]. 
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  By propagating information unidirectionally from input to output, the MLP learns hierarchical feature 

representations and has demonstrated strong performance in classification tasks across various domains, as 

well as in CKD prediction, where MLPs combined with kernel-based dimensionality reduction achieved up 

to 100% accuracy [3]. 

3.5|Genetic Algorithm 

GAs are a class of population-based metaheuristic optimization techniques inspired by the principles of 

natural selection and evolutionary biology. A GA begins with a randomly generated population of candidate 

solutions, known as chromosomes, which are evaluated based on a fitness function that reflects how well 

each solution solves a given problem. Through iterative processes involving selection, Crossover 

(Recombination), and mutation, the algorithm evolves the population over multiple generations to improve 

overall fitness [26]. The selection phase allows high-performing individuals to pass their genes to the next 

generation, whereas crossover combines parts of two parents to produce offspring with mixed traits. Mutation 

introduces diversity by randomly altering genes, thereby helping to avoid local optima. GAs are particularly 

suitable for complex search spaces where traditional gradient-based methods may fail, as they do not require 

derivative information and are inherently parallelizable [27]. The proposed work modified the GA by 

enhancing the fitness evaluation with parallel evaluation through multithreading to increase computational 

time. The algorithm of the proposed technique is shown in Algorithm 1. 

3.5.1|Proposed multiprocessing interface genetic algorithm 

Algorithm 1. Multiprocessing interface genetic algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

4|Results 

The study was able to propose a modified GA for optimizing the MLP. The optimized model was used to 

predict diseases, and the framework was transformed into an app that incorporates the proposed 

hyperparameter tuning technique to achieve enhanced performance. The study evaluated the performance of 

the proposed model on three different datasets: breast cancer, CKD, and Parkinson's. Table 1 presents the 

hyperparameters optimized via the GA during the training of the MLPC. The search space for the hidden 

layer sizes included various configurations ranging from (50), (100), and (150) to two-layer architectures such 

Begin 
1. Initialize population 
2. Generate an initial population 𝒫0 = ሼθ1, θ2, … , θPሽ with random values from S 
3. For each generation, g = 1 to G: 

a. Parallel fitness evaluation: 
● Compute Fሺθiሻ for each θi ∈ 𝒫g by multithreading 

b. Selection: 
Rank population by fitness 
Select the top 50% as parents 𝒫elite ⊂ 𝒫g 

c. Crossover: 

While ห𝒫g+1ห < P: 

i. Randomly select two parents θp
ሺ1ሻ

, θp
ሺ2ሻ

∈ 𝒫elite  

ii. Generate child θc by randomly selecting each gene from either parent 
iii. Append θc to the next generation 

d. Mutation 
● For each offspring, with probability μ, one hyperparameter is randomly mutated. 

e. Update population 
● Set 𝒫g+1 ← newly formed generation. 

f. Track the best solution 
● If any θ ∈ 𝒫g+1 has better fitness than θ∗, update θ∗ ← θ. 

3. Return 
Final best hyperparameter configuration θ∗ and its fitness score Fሺθ∗ሻ. 
End 
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  as (50, 50) and (100, 100). The activation functions considered in the search process were ReLU, tanh, and 

logistic, allowing the model to explore different nonlinear transformation capabilities. The initial learning rates 

were tuned across three values: 0.001, 0.01, and 0.1, enabling the GA to adjust the convergence behaviour of 

the neural network. Finally, the solvers ‘adam’ and ‘SGD’ were explored to determine the most effective 

optimization technique for minimizing loss during training. 

Table 1. Hyperparameters tuned by the genetic algorithm. 

 

 

 

 

Table 2 outlines the configuration settings employed for the proposed GA in tuning the hyperparameters of 

the MLP. The population size was set to 10 individuals, and the algorithm evolved over 10 generations. A 

mutation rate of 10% was applied, where one hyperparameter in a chromosome was randomly altered. The 

selection strategy used was elitist selection, retaining the top 50% of individuals based on fitness scores. A 

uniform crossover approach was adopted to recombine the parent chromosomes. The fitness function was 

defined as the accuracy score on the test dataset, and evaluations were executed in parallel via 

ThreadPoolExecutor to accelerate computation. Each chromosome encodes a complete model configuration 

represented by the tuple [Hidden layer size, activation function, learning rate, solver]. The proposed technique 

was explicitly applied to optimize an MLP with a maximum iteration limit of 500. 

Table 2. Genetic algorithm settings. 

 

 

 

 

 

 

 

 

Table 3 presents the performance metrics of the MIGA by generation when applied to the Parkinson dataset. 

Across 10 generations, the algorithm consistently demonstrated strong optimization capability, with the best 

accuracy reaching 0.9487 from generation 2 onwards. The minimum and maximum accuracy values for each 

generation reflect the diversity in model performance within the population, with early fluctuations gradually 

stabilizing in later generations. The results indicate that the algorithm effectively converges toward high-

performing hyperparameter combinations, maintaining an accuracy of 0.9487 for the majority of generations. 

Table 3. Performance of the multiprocessing interface genetic algorithm when 

applied to the multilayer perceptron on the Parkinson dataset. 

 

 

 

Hyperparameter Search Space/Values 

Hidden layer sizes (50), (100), (150), (50, 50), (100, 100) 

Activation function 'relu', 'tanh', 'logistic' 

Learning rate init 0.001, 0.01, 0.1 

Solver 'adam', 'SGD' 

GA Parameter Value 

Population size 10 

Number of generations 10 

Mutation rate 0.1 (10%) 

Selection strategy Elitist selection (Top 50% by fitness) 

Crossover strategy Uniform crossover 

Mutation strategy Random mutation of one hyperparameter 

Fitness function Accuracy score on test set 

Parallel evaluation (ThreadPoolExecutor) 

Chromosome representation [Layer size, activation, learning rate, solver] 

Model evaluated MLPClassifier (Max_iter = 500) 

Generation Min Max Best 

1 0.8718 0.9231 0.9231 

2 0.8974 0.9487 0.9487 

3 0.8974 0.9487 0.9487 

4 0.8974 0.9487 0.9487 

5 0.8718 0.9487 0.9487 
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  Table 3. Continued. 

 

 

 

 

 

Table 4 summarizes the performance of the MIGA across 10 generations on the Breast Cancer dataset. The 

results show strong classification performance, with the best accuracy, reaching a peak of 0.9912 as early as 

generation 2 and remaining consistently high throughout subsequent generations. The minimum and 

maximum accuracies recorded per generation demonstrate moderate variation in early generations, followed 

by stabilization as the algorithm converges. The sustained best accuracy across multiple generations indicates 

the robustness and efficiency of the MIGA in evolving optimal hyperparameter configurations for MLP-

based classification on the breast cancer dataset. 

Table 4. Performance of the multiprocessing interface genetic algorithm when 

applied to the multilayer perceptron on the Breast Cancer dataset. 

 

 

 

 

 

 

 

 

Table 5 presents the accuracy performance of the MIGA over 10 generations when it is applied to the CKD 

dataset. The algorithm consistently achieves exceptional accuracy, with the best performance reaching 1.0000 

(100%) from the first generation and maintaining this level throughout all subsequent generations. The 

minimum and maximum accuracy values indicate only instability in the population, with minimum values 

ranging from 0.9625 to 0.9875. This high and stable performance across generations highlights the 

effectiveness of the MIGA in discovering optimal MLP hyperparameters for CKD classification tasks, 

suggesting strong model generalizability and convergence. 

Table 5. Performance of the multiprocessing interface genetic algorithm when the 

multilayer perceptron is applied to the chronic kidney disease dataset. 

 

 

 

 

 

 

 

Generation Min Max Best 

6 0.8974 0.9487 0.9487 

7 0.8462 0.9487 0.9487 

8 0.8462 0.9487 0.9487 

9 0.8974 0.9231 0.9231 

10 0.8974 0.9487 0.9487 

Generation Min Max Best 

1 0.9561 0.9625 0.9625 

2 0.9649 0.9912 0.9912 

3 0.9825 0.9912 0.9912 

4 0.9373 0.9825 0.9825 

5 0.9825 0.9825 0.9825 

6 0.9561 0.9825 0.9825 

7 0.9561 0.9825 0.9825 

8 0.9561 0.9825 0.9825 

9 0.9825 0.9825 0.9825 

10 0.9649 0.9912 0.9912 

Generation Min Max Best 

1 0.9625 1.0000 1.0000 
2 0.9750 1.0000 1.0000 
3 0.9750 1.0000 1.0000 
4 0.9750 1.0000 1.0000 
5 0.9750 1.0000 1.0000 
6 0.9750 1.0000 1.0000 
7 0.9750 1.0000 1.0000 
8 0.9875 1.0000 1.0000 
9 0.9875 1.0000 1.0000 
10 0.9750 1.0000 1.0000 
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  Table 6 summarizes the best-performing hyperparameter configurations obtained with the MIGA on the 

Parkinson's, breast cancer, and CKD datasets. For the Parkinson dataset, the optimal configuration achieved 

is 150 hidden layer units, ReLU activation, a learning rate of 0.1, and the Adam solver, which achieves an 

accuracy of 95.00%. For the Breast Cancer dataset, the proposed model achieved the highest accuracy of 

99.12% with 50 hidden units, the tanh activation function, a learning rate of 0.001, and the Adam solver. 

Additionally, on the CKD dataset, the proposed model performed best with 50 hidden units, tanh activation, 

a learning rate of 0.1, and the SGD solver, resulting in 100% accuracy. These results demonstrate the 

adaptability and effectiveness of the MIGA in fitting the MLP configurations for the three different medical 

datasets. 

Table 6. Optimal configuration of hyperparameters applied to each dataset with the 

multiprocessing interface genetic algorithm. 

 

 

 

Table 7 shows the timing logs from the hyperparameter tuning experiments. For each of the three datasets, 

the study recorded the total wall-clock time of the 10-generation GA search, both in the standard (Single-

threaded) mode and with the proposed MIGA (Parallel) evaluator, in seconds. 

Table 7. Comparison of the tuning time and speed-up between the standard genetic 

algorithm and the multiprocessing interface genetic algorithm. 

 

 

 

 

The proposed MLP tuned with the proposed MIGA performed better than the state-of-the-art optimization 

approaches across all three datasets. A summary of the comparison of the breast cancer datasets is shown in 

Table 8. 

Table 8. Comparison of MIGA+MLP with several optimization-based models. 

 

 

 

 

 

 

 

 

 

Dataset H/L Activation Learning Rate Solver Accuracy 

Parkison 150 ReLu 0.1 Adam 95.00% 

Breast Cancer 100 Tanh 0.001 Adam 99.00% 

CKD 100 Tanh 0.1 SGD 100% 

Dataset Standard GA Time (s) MIGA Time (s) Reduction (%) 

Breast Cancer 107.05 48.05 59.0 

Parkison 95.30 34.20 61.1 

CKD 71.46 11.46 60.0 

Average 91.27 31.24 60.3 

Dataset Author Model Optimization 
Method 

Accuracy 

Breast 
Cancer 

El-
Hassani 
et al. [12] 

ANN RCGAs 96.00% 

 Aguerchi 
et al. [23]  

CNN PSO 98.23% 
(DDSM), 
97.98% 
(MIAS) 

 Zhu et al. 
[28]  

LightGBM PSO 99.0% 

 Proposed 
method 

MLP MIGA 99.00% 

CKD Ranga    
et al. [13] 

MLP GA 98.54% 

 Swain et 
al. [29] 

SVM Grid Search 99.33% 
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  Table 8. Continued. 

 

 

 

 

 

 

 

 

 

 

 

 

The study developed a GUI that performs hyperparameter tuning in a unified window: The top panel includes 

a select file button to load any CSV file; a dropdown to select the target variable; text fields for user hidden-

layer sizes, activation functions, learning rates, and solvers; and a start-tuning button. The bottom panel 

displays a scrollable console that logs each generation’s best configuration and then summarizes the optimal 

hyperparameters, MIGA runtime, training time, test accuracy, confusion matrix, and classification report. 

Finally, a save model button exports the trained MLP. Fig. 2 shows the interface of the proposed model on 

the CKD dataset. Fig. 3 shows the interface on the Parkinson’s dataset. Fig. 4 shows the interface on the 

breast cancer dataset. 

Fig. 2. The proposed method interface on the chronic kidney disease dataset. 

 

 

 

Dataset Author Model Optimization 
Method 

Accuracy 

 Kaur et al. 
[9] 

MLP PSO 92.76% 

 Proposed 
method 

MLP MIGA 100% 

Parkison Elshewey 
et al. [30] 

SVM Bayesian 
Optimization 

92.30% 

 Doumari 
et al. [17] 

MLP Quantum Particle 
Swarm 
Optimization 
(QPSO) 

93.00% 

 Ali et al. 
[19] 

NN GA 95.00% 

 Proposed 
method 

MLP MIGA 95.00% 
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Fig. 3. Developed interface. 

 

Fig. 4. Proposed method interface for Parkinson’s disease. 
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Fig. 5. Proposed method interface for treating breast cancer. 

 

5|Discussion 

The proposed MIGA overcomes the computational cost of the GA by parallelizing fitness evaluations across 

multiple CPU cores, which reduces the tuning time by approximately 60% compared to a single-threaded 

approach [7]. This efficiency gain enables the algorithm to maintain or even expand its population size and 

number of generations without requiring excessive runtime. The combination of nonlinear feature extraction 

via radial-basis-function kernel PCA and MIGA-tuned MLP produced classifiers that generalize exceptionally 

well, achieving 99.12% for breast cancer, 94.87% for PD, and 100% for CKD. These results suggest that the 

framework can capture complex relationships in diverse biomedical datasets. Future work will apply this 

methodology to additional clinical cohorts to confirm its robustness and to discover dataset-specific feature 

interactions. The developed graphical user interface, which guides users through data import, dimensionality 

reduction, hyperparameter optimization, and model evaluation without any programming, is crucial for 

translating these advanced AI methods into everyday clinical practice. 

6|Conclusion 

This study introduced a disease-prediction framework that integrates kernel PCA for nonlinear dimensionality 

reduction, an MLP classifier, and a modified multiprocessing-enabled GA (MIGA) for efficient 

hyperparameter tuning. The approach was evaluated on three different medical datasets: breast cancer, PD, 

and CKD. The MLP-tuned MIGA outperforms models optimized with traditional methods, achieving the 

best accuracies of 99.12% for breast cancer, 94.87% for PD, and 100% for CKD. The use of kernel PCA 

enables the extraction of nonlinear structures, thereby improving predictive performance. In contrast, the 

parallel fitness evaluations in the MIGA reduce computational time and accelerate convergence toward 

optimal hyperparameters. A user-friendly GUI further enables non-expert clinicians to apply the framework 

to new datasets with minimal effort. This study has proven the potential of combining advanced optimization 

methods with nonlinear feature extraction to increase disease prediction accuracy and usability in real-world 

healthcare settings. 
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