An Appraisal on the Dynamics of Radionuclides Contamination Matrix: A Generic Review of Radioactive Assessment in Environmental Health
Abstract
Radionuclides contamination poses a significant threat to environmental health. This contamination matrix can harm ecosystems, including biodiversity loss, food chain disruption, environmental degradation, and genetic mutations in plants and animals. In addition, exposure to radioactive contaminants can increase the risk of cancer, congenital disabilities, and other health problems in humans. This necessitated a comprehensive review of radionuclide elements, key substances, sources, properties, decay constants, decay rate, half-life, dose-response relationship, exposure pathways, measuring techniques, recorded accidents, human activities, detection and remediation strategies, policies, regulations and models on radioactive contaminants. This study employed a qualitative research approach, focusing on a review of existing literature on radionuclide contamination and assessment approaches. The literature review included peer-reviewed articles, research reports, and publications related to radioactive assessment—an analysis of the literature aimed at identifying common themes and trends in assessing radionuclide contamination. The findings revealed several key issues in determining radionuclide contamination, including the lack of standardized assessment protocols, limited availability of data on radionuclide Contamination, and the challenges in predicting the long-term effects of radioactive materials on environmental health. Moreover, it was noted that some radionuclides have half-lives of thousands of years, indicating long-term persistence that can make it challenging to remediate contaminated sites and mitigate the impacts of environmental radioactive Contamination. The study suggests that addressing these issues can improve the accuracy and reliability of radioactive assessment, ultimately leading to better environmental health protection from the impacts of radionuclide Contamination.
Keywords:
Radioactive assessment, Remediation techniques, Environmental health, Radionuclides contamination, Policies and regulationsReferences
- [1] Deng, D., Zhang, L., Dong, M., Samuel, R. E., Ofori-Boadu, A., & Lamssali, M. (2020). Radioactive waste: A review. Water environment research, 92(10), 1818–1825. https://doi.org/10.1002/wer.1442
- [2] Ekanem, I. I., Bassey, M. O., & Ikpe, A. E. (2024). Assessing the impact of radioactive contamination in groundwater and environmental quality: A comparative study of remediation technique. Risk assessment and management decisions, 1(2), 209–226. https://doi.org/10.48314/ramd.v1i2.39
- [3] Li, P., Karunanidhi, D., Subramani, T., & Srinivasamoorthy, K. (2021). Sources and consequences of groundwater contamination. Archives of environmental contamination and toxicology, 80(1), 1–10. https://doi.org/10.1007/s00244-020-00805-z
- [4] Huysegoms, L., & Cappuyns, V. (2017). Critical review of decision support tools for sustainability assessment of site remediation options. Journal of environmental management, 196, 278–296. https://doi.org/10.1016/j.jenvman.2017.03.002
- [5] Rizzo, E., Bardos, P., Pizzol, L., Critto, A., Giubilato, E., Marcomini, A., … . & Smith, G. (2016). Comparison of international approaches to sustainable remediation. Journal of environmental management, 184, 4–17. https://doi.org/10.1016/j.jenvman.2016.07.062
- [6] Korede, O. G., Akinyemi, O. O., & Oshilalu, A. Z. (2023). Environmental and ecological impact of radioactive waste disposal. World journal of advanced research and reviews, 18(2), 1419–1439. https://doi.org/10.30574/wjarr.2023.18.2.0728
- [7] Sharma, R., Adhoni, S. A., & Vaijinath, P. (2023). Soil matters: Uncovering the impact of contamination on earth’s foundation. Shineeks Publishers. https://B2n.ir/ku5865
- [8] Ndifreke, E. I., Imoh, I. E., & Eyo, S. A. (2024). Assessment of medical waste disposal and environmental implications in Uyo city metropolis. FUPRE journal of scientific and industrial research, 8(3), 296–307. https://www.researchgate.net/publication/385888049
- [9] Ekanem, I. I., Ikpe, A. E., & Ikpe, E. O. (2024). The menace of plastic waste in nigeria and its management techniques in the 21st century. Systemic analytics, 2(2), 200–217. https://doi.org/10.31181/sa22202418
- [10] Song, Y., Hou, D., Zhang, J., O’Connor, D., Li, G., Gu, Q., … ., & Liu, P. (2018). Environmental and socio-economic sustainability appraisal of contaminated land remediation strategies: A case study at a mega-site in China. Science of the total environment, 610–611, 391–401. https://doi.org/10.1016/j.scitotenv.2017.08.016
- [11] Sam, K., Coulon, F., & Prpich, G. (2017). Management of petroleum hydrocarbon contaminated sites in Nigeria: Current challenges and future direction. Land use policy, 64, 133–144. https://doi.org/10.1016/j.landusepol.2017.01.051
- [12] Rathi, B. S., Kumar, P. S., & Vo, D. V. N. (2021). Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Science of the total environment, 797, 149134. https://doi.org/10.1016/j.scitotenv.2021.149134
- [13] Kuppan, N., Padman, M., Mahadeva, M., Srinivasan, S., & Devarajan, R. (2024). A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste management bulletin, 2(3), 154–171. https://doi.org/10.1016/j.wmb.2024.07.005
- [14] Kumar, V., Shahi, S. K., & Singh, S. (2018). Bioremediation: An eco-sustainable approach for restoration of contaminated sites. In Microbial bioprospecting for sustainable development (pp. 115–136). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-0053-0_6
- [15] Diarra, I., Kotra, K. K., & Prasad, S. (2022). Application of phytoremediation for heavy metal contaminated sites in the South Pacific: Strategies, current challenges and future prospects. Applied spectroscopy reviews, 57(6), 490–512. https://doi.org/10.1080/05704928.2021.1904410
- [16] Baklanov, A. (2007). Environmental risk and assessment modelling -- scientific needs and expected advancements. Air, water and soil quality modelling for risk and impact assessment (pp. 29–44). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-5877-6_3
- [17] Karmaker, N., Maraz, K. M., Islam, F., Haque, M. M., Razzak, M., Mollah, M., … ., & Khan, R. A. (2021). Fundamental characteristics and application of radiation. GSC advanced research and reviews, 7(1), 64–72. https://doi.org/10.30574/gscarr.2021.7.1.0043
- [18] L’Annunziata, M. F. (2020). The atomic nucleus, nuclear radiation, and the interaction of radiation with matter. In Handbook of radioactivity analysis (pp. 1–243). Academic Press. https://doi.org/10.1016/B978-0-12-814397-1.00001-7
- [19] Vallabhajosula, S. (2023). Production of radionuclides. In Molecular imaging and targeted therapy: Radiopharmaceuticals and clinical applications (pp. 147–183). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-23205-3_8
- [20] Verma, D. K., Rameshwari, R., & Meena, J. (2025). Health and environmental risk of alpha emitter radium. In Hazardous chemicals (pp. 713–722). Academic Press. https://doi.org/10.1016/B978-0-323-95235-4.00015-3
- [21] Pathak, A. (2023). Interaction of radiation with matter. In Tools and techniques in radiation biophysics (pp. 75–92). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-6086-6_5
- [22] Dragović, S., Yamauchi, M., Aoyama, M., Kajino, M., Petrović, J., Ćujić, M., … ., & Bór, J. (2020). Synthesis of studies on significant atmospheric electrical effects of major nuclear accidents in Chernobyl and Fukushima. Science of the total environment, 733, 139271. https://doi.org/10.1016/j.scitotenv.2020.139271
- [23] Abubakr, A., Othman, A. I., & Ewedah, T. M. (2024). The applications of radioisotopes in modern medicine: A review of diagnostic, therapeutic, and research advancements. ERU research journal, 3(4), 1680–1694. https://dx.doi.org/10.21608/erurj.2024.294087.1157
- [24] Gupta, P. K. (2020). Radiation and radioactive materials. In Problem solving questions in toxicology: A study guide for the board and other examinations (pp. 241–251). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-50409-0_19
- [25] Aghevlian, S., Boyle, A. J., & Reilly, R. M. (2017). Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Advanced drug delivery reviews, 109, 102–118. https://doi.org/10.1016/j.addr.2015.12.003
- [26] Gupta, T. K. (2013). Nuclear radiation, ionization, and radioactivity. In Radiation, ionization, and detection in nuclear medicine (pp. 1–57). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-34076-5_1
- [27] Podgorsak, E. B. (2013). Modes of radioactive decay. In Compendium to radiation physics for medical physicists: 300 problems and solutions (pp. 693–786). Springer Science & Business Media. https://link.springer.com/book/10.1007/978-3-642-20186-8
- [28] Qaim, S. M., Scholten, B., Spahn, I., & Neumaier, B. (2019). Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use. Radiochimica acta, 107(9), 1011–1026. https://doi.org/10.1515/ract-2019-3154
- [29] Nichols, A. L. (2001). Decay data: Review of measurements, evaluations and compilations. Applied radiation and isotopes, 55(1), 23–70. https://doi.org/10.1016/S0969-8043(00)00382-1
- [30] Pommé, S. (2022). Radionuclide metrology: Confidence in radioactivity measurements. Journal of radioanalytical and nuclear chemistry, 331(12), 4771–4798. https://doi.org/10.1007/s10967-022-08494-9
- [31] Pommé, S. (2015). The uncertainty of the half-life. Metrologia, 52(3), S51. http://dx.doi.org/10.1088/0026-1394/52/3/S51
- [32] Heinitz, S., Kajan, I., & Schumann, D. (2022). How accurate are half-life data of long-lived radionuclides? Radiochimica acta, 110(6), 589–608. https://doi.org/10.1515/ract-2021-1135
- [33] Pfützner, M., Karny, M., Grigorenko, L. V, & Riisager, K. (2012). Radioactive decays at limits of nuclear stability. Reviews of modern physics, 84(2), 567–619. https://doi.org/10.1103/RevModPhys.84.567
- [34] Saha, G. B. (2010). Radioactive decay. In Fundamentals of nuclear pharmacy (pp. 11–31). Springer. https://doi.org/10.1007/978-1-4419-5860-0_2
- [35] Elaboudi, Z., Madinzi, A., Saadi, R., Laissaoui, A., Kurniawan, T. A., Anouzla, A., & Souabi, S. (2024). A review of radionuclides impacts and remediation techniques. Euro-mediterranean journal for environmental integration, 1–17. https://doi.org/10.1007/s41207-024-00613-0
- [36] Rajkhowa, S., Sarma, J., & Rani Das, A. (2021). Radiological contaminants in water: pollution, health risk, and treatment. In Contamination of water (pp. 217–236). Academic Press. https://doi.org/10.1016/B978-0-12-824058-8.00013-X
- [37] kizi, M. A. A., Mamajonovich, Y. M., & Tolkinjanovna, A. F. (2024). Contamination of the environment with radioactive substances and effect on the human body. Miasto przyszłości, 49, 1245–1248. https://miastoprzyszlosci.com.pl/index.php/mp/article/view/4118
- [38] Jeskovsky, M., Kaizer, J., Kontuĺ, I., Lujanienė, G., Mullerova, M., & Povinec, P. (2019). Analysis of environmental radionuclides. In Handbook of radioactivity analysis (pp. 137–261). Academic Press. http://dx.doi.org/10.1016/b978-0-12-814395-7.00003-9
- [39] Salbu, B., Kashparov, V., Lind, O. C., Garcia-Tenorio, R., Johansen, M. P., Child, D. P., … ., & Sancho, C. (2018). Challenges associated with the behaviour of radioactive particles in the environment. Journal of environmental radioactivity, 186, 101–115. https://doi.org/10.1016/j.jenvrad.2017.09.001
- [40] Yang, H., Feng, Q., Xu, W., Tang, Y., Bai, G., Liu, Y., … ., & Zhang, Y. (2024). Unraveling the nuclear isotope tapestry: Applications, challenges, and future horizons in a dynamic landscape. Eco-environment & health, 3(2), 208–226. https://doi.org/10.1016/j.eehl.2024.01.001
- [41] Yadav, V. B., Pulhani, V., & Jha, S. K. (2024). Climate change and its impact on the fate of radioactivity in the environment. In Handbook on radiation environment (pp. 189–217). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-2795-7_7
- [42] Geras’kin, S., Evseeva, T., & Oudalova, A. (2013). Effects of long-term chronic exposure to radionuclides in plant populations. Journal of environmental radioactivity, 121, 22–32. https://doi.org/10.1016/j.jenvrad.2012.03.007
- [43] Kamiya, K., Ozasa, K., Akiba, S., Niwa, O., Kodama, K., Takamura, N., … ., & Wakeford, R. (2015). Long-term effects of radiation exposure on health. The lancet, 386(9992), 469–478. https://doi.org/10.1016/S0140-6736(15)61167-9
- [44] Chaturvedi, A., & Jain, V. (2019). Effect of ionizing radiation on human health. International journal of plant and environment, 5(03), 200–205. http://dx.doi.org/10.18811/ijpen.v5i03.8
- [45] D. Brugge, J.L. deLemos, & B. Oldmixon. (2005). Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: A review. Reviews on environmental health, 20(3), 177–194. https://doi.org/10.1515/REVEH.2005.20.3.177
- [46] Mettler, F. A. J., Gus’kova, A. K., & Gusev, I. (2007). Health Effects in Those with Acute Radiation Sickness from the Chernobyl Accident. Health physics, 93(5), 462–469. https://doi.org/10.1097/01.hp.0000278843.27969.74
- [47] Alcocer, G., Alcocer, P., & Marquez, C. (2020). Burns by ionizing and nonionizing radiation. Journal of burn care & research, 45(6), 1464–1472. https://doi.org/10.1093/jbcr/iraa180
- [48] Arciszewska, Ż., Gama, S., Leśniewska, B., Malejko, J., Nalewajko-Sieliwoniuk, E., Zambrzycka-Szelewa, E., & Godlewska-Żyłkiewicz, B. (2022). The translocation pathways of rare earth elements from the environment to the food chain and their impact on human health. Process safety and environmental protection, 168, 205–223. https://doi.org/10.1016/j.psep.2022.09.056
- [49] Afzaal, M., Hameed, S., Liaqat, I., Ali Khan, A. A., abdul Manan, H., Shahid, R., & Altaf, M. (2022). Heavy metals contamination in water, sediments and fish of freshwater ecosystems in Pakistan. Water practice & technology, 17(5), 1253–1272. https://doi.org/10.2166/wpt.2022.039
- [50] Dhanekar, S., & Rangra, K. (2021). Wearable dosimeters for medical and defence applications: A state of the art review. Advanced materials technologies, 6(5), 2000895. https://doi.org/10.1002/admt.202000895
- [51] Damulira, E., Yusoff, M. N. S., Omar, A. F., & Mohd Taib, N. H. (2019). A review: Photonic devices used for dosimetry in medical radiation. Sensors, 19(10), 2226. https://doi.org/10.3390/s19102226
- [52] de Ceuninck, M., Philip, M., Stefaan, van de W., Bernard, B., Rik, H., Francis, S., & Dujardin, K. (2019). A quality project for radiation reduction in the cath lab. ACTA cardiologica, 74(1), 38–44. https://doi.org/10.1080/00015385.2018.1439705
- [53] Fathy, M. H., Shaban, F., Fawzy, T. M., Nguyen, D. V., & Eldosouky, A. M. (2024). Spectroscopic techniques for detecting naturally occurring radioactive nuclides in geology and water: A comprehensive review and health implications. Journal of geography and cartography, 7(2), 6909. https://doi.org/10.24294/jgc.v7i2.6909
- [54] Bodin, L., & Menetrier, F. (2021). Treatment of radiological contamination: A review. Journal of radiological protection, 41(4), S427. https://dx.doi.org/10.1088/1361-6498/ac241b
- [55] Butt, M. A., Voronkov, G. S., Grakhova, E. P., Kutluyarov, R. V, Kazanskiy, N. L., & Khonina, S. N. (2022). Environmental monitoring: A comprehensive review on optical waveguide and fiber-based sensors. Biosensors, 12(11), 1038. https://doi.org/10.3390/bios12111038
- [56] Obrador, E., Salvador-Palmer, R., Villaescusa, J. I., Gallego, E., Pellicer, B., Estrela, J. M., & Montoro, A. (2022). Nuclear and radiological emergencies: Biological effects, countermeasures and biodosimetry. Antioxidants, 11(6), 1098. https://doi.org/10.3390/antiox11061098
- [57] Boniardi, L., Campo, L., Olgiati, L., Longhi, F., Scuffi, C., & Fustinoni, S. (2023). Biological monitoring and personal exposure to traffic-related air pollutants of elementary school-age children living in a metropolitan area. Science of the total environment, 857, 159654. https://doi.org/10.1016/j.scitotenv.2022.159654
- [58] Alwaeli, M., & Mannheim, V. (2022). Investigation into the current state of nuclear energy and nuclear waste management—a state-of-the-art review. Energies, 15(12), 4275. https://doi.org/10.3390/en15124275
- [59] Rasheed, P. A., Nayar, S. K., Barsoum, I., & Alfantazi, A. (2022). Degradation of concrete structures in nuclear power plants: A review of the major causes and possible preventive measures. Energies, 15(21), 8011. https://doi.org/10.3390/en15218011
- [60] Hoheisel, M. (2006). Review of medical imaging with emphasis on X-ray detectors. Nuclear instruments and methods in physics research section A: Accelerators, spectrometers, detectors and associated equipment, 563(1), 215–224. https://doi.org/10.1016/j.nima.2006.01.123
- [61] Ogiela, M. R., & Tadeusiewicz, R. (2008). Sources of medical images and their general characteristics. In Modern computational intelligence methods for the interpretation of medical images (pp. 7–45). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-75402-2_2
- [62] Falck, W. E. (2015). Radioactive and other environmental contamination from uranium mining and milling. In Environmental remediation and restoration of contaminated nuclear and norm sites (pp. 3–34). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-231-0.00001-6
- [63] Jha, S. K., Patra, A. C., Verma, G. P., Iyer, I. S., & Aswal, D. K. (2024). Natural radiation and environment. In Handbook on radiation environment (pp. 27–72). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-2795-7_2
- [64] Nunes, L. J. R., Curado, A., & Lopes, S. I. (2023). The relationship between radon and geology: Sources, transport and indoor accumulation. Applied sciences, 13(13), 7460. https://doi.org/10.3390/app13137460
- [65] Prăvălie, R. (2014). Nuclear weapons tests and environmental consequences: A global perspective. AMBIO, 43(6), 729–744. https://doi.org/10.1007/s13280-014-0491-1
- [66] Steinhauser, G., Brandl, A., & Johnson, T. E. (2014). Comparison of the chernobyl and fukushima nuclear accidents: A review of the environmental impacts. Science of the total environment, 470, 800–817. https://doi.org/10.1016/j.scitotenv.2013.10.029
- [67] Subba Rao, T., Panigrahi, S., & Velraj, P. (2022). Transport and disposal of radioactive wastes in nuclear industry. In Microbial biodegradation and bioremediation (pp. 419–440). Elsevier. https://doi.org/10.1016/B978-0-323-85455-9.00027-8
- [68] Chapman, N., & Hooper, A. (2012). The disposal of radioactive wastes underground. Proceedings of the geologists’ association, 123(1), 46-63. https://doi.org/10.1016/j.pgeola.2011.10.001
- [69] Ruiz-Fresneda, M. A., Martinez-Moreno, M. F., Povedano-Priego, C., Morales-Hidalgo, M., Jroundi, F., & Merroun, M. L. (2023). Impact of microbial processes on the safety of deep geological repositories for radioactive waste. Frontiers in microbiology, 14, 1134078. https://doi.org/10.3389/fmicb.2023.1134078
- [70] Ma, M., Wang, R., Xu, L., Xu, M., & Liu, S. (2020). Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades. Environment international, 145, 106107. https://doi.org/10.1016/j.envint.2020.106107
- [71] Sarkar, A. (2019). Nuclear power and uranium mining: current global perspectives and emerging public health risks. Journal of public health policy, 40(4), 383–392. https://doi.org/10.1057/s41271-019-00177-2
- [72] Romanov, S. A., Efimov, А. V., Aladova, Е. Е., Suslova, К. G., Kuznetsova, I. S., Sokolova, А. В., … ., & Khokhryakov, V. F. (2020). Plutonium production and particles incorporation into the human body. Journal of environmental radioactivity, 211, 106073. https://doi.org/10.1016/j.jenvrad.2019.106073
- [73] Tirmarche, M., Apostoaei, I., Blanchardon, E., Ellis, E. D., Gilbert, E., Harrison, J. D., … ., Zhivin, S. (2021). ICRP publication 150: Cancer risk from exposure to plutonium and uranium. Annals of the international commission on radiological protection, 50(4), 1–143. https://doi.org/10.1177/01466453211028020
- [74] Ashraf, M. A., Akib, S., Maah, M. J., Yusoff, I., & Balkhair, K. S. (2014). Cesium-137: Radio-chemistry, fate, and transport, remediation, and future concerns. Critical reviews in environmental science and technology, 44(15), 1740–1793. https://doi.org/10.1080/10643389.2013.790753
- [75] Al-Tameemi, N. H. A. (2010). Assessment of cancer risk to the human tissues related to public exposure to Cesium-137. Al-mustansiriyah journal of science, 21(6).
- [76] Chakravarty, R., & Dash, A. (2012). Availability of yttrium-90 from strontium-90: A nuclear medicine perspective. Cancer biotherapy and radiopharmaceuticals, 27(10), 621–641. https://doi.org/10.1089/cbr.2012.1285
- [77] Braverman, E. R., Blum, K., Loeffke, B., Baker, R., Kreuk, F., Yang, S. P., & Hurley, J. R. (2015). Managing terrorism or accidental nuclear errors, preparing for Iodine-131 emergencies: A comprehensive review. In Anti-aging therapeutics volume xvii. A4M American Academy of Anti-Aging Medicine. http://dx.doi.org/10.3390/ijerph110404158
- [78] Anderson, P. D., & Bokor, G. (2013). Nuclear and radiological terrorism: Continuing education article. Journal of pharmacy practice, 26(3), 171–182. https://doi.org/10.1177/0897190012474238
- [79] Nieder, R., Benbi, D. K., & Reichl, F. X. (2018). Health risks associated with radionuclides in soil materials. In Soil components and human health (pp. 451–501). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-024-1222-2_9
- [80] Nie, B., Fang, S., Jiang, M., Wang, L., Ni, M., Zheng, J., … ., & Li, F. (2021). Anthropogenic tritium: Inventory, discharge, environmental behavior and health effects. Renewable and sustainable energy reviews, 135, 110188. https://doi.org/10.1016/j.rser.2020.110188
- [81] Dobrzyńska, M., Gajowik, A., & Wieprzowski, K. (2023). Radon - occurrence and impact on the health. Roczniki panstwowego zakladu higieny, 74(1), 5–14. http://dx.doi.org/10.32394/rpzh.2023.0242
- [82] Manawi, Y., Hassan, A., Atieh, M. A., & Lawler, J. (2024). Overview of radon gas in groundwater around the world: Health effects and treatment technologies. Journal of environmental management, 368, 122176. https://doi.org/10.1016/j.jenvman.2024.122176
- [83] Bhatt, D., Kumar, R., Kumar, R., & Prakash, O. (2025). Health effects and toxicity mechanism of thorium: Knowledge gaps and research prospects. In Hazardous chemicals (pp. 729–740). Academic Press. https://doi.org/10.1016/B978-0-323-95235-4.00009-8
- [84] Naja, G. M., & Volesky, B. (2017). Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment. In Handbook of advanced industrial and hazardous wastes management (pp. 855–903). Crc Press. https://doi.org/10.1201/9781315117423
- [85] Eidemüller, D. (2021). Radioactive incidents and disasters. In Nuclear power explained (pp. 195–240). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-72670-6_10
- [86] Rhodes, C. J. (2014). The fukushima daiichi nuclear accident. Science progress, 97(1), 72–86. https://doi.org/10.3184/003685014X13904938571454
- [87] Degteva, M. O., Vorobiova, M. I., Shagina, N. B., Shishkina, E. A., Anspaugh, L. R., & Napier, B. A. (2008). A review of data on releases of radioactive wastes from the Mayak Production Association into the Techa River in 1949--1956. Report on ISTC project, 2841. https://b2n.ir/jb2889
- [88] Edwards, F. L. (2017). Emergency management for radiological events: Lessons learned from three mile Island, Chernobyl, and Fukushima reactor accidents. In Crisis and emergency management (pp. 245–264). Routledge. https://doi.org/10.4324/9781315095264
- [89] Leigh, W. J., & Wakeford, R. (2001). Radiation litigation and the nuclear industry-the experience in the United Kingdom. Health physics, 81(6), 646–654. https://doi.org/10.1097/00004032-200112000-00014
- [90] Hassun, J. M., Zanatta-Kline, M. J., Kawaguchi, M., Hendricks, M. B. D., Zahner, O., Bustos-Ortiz, R., … ., & Ahmed, Z. H. (2022). Loom of the future: Nuclear decolonization and uw. http://hdl.handle.net/1773/51509
- [91] Iqbal, J., M. Howari, F., Mohamed, A. M. O., & Paleologos, E. K. (2021). Assessment of radiation pollution from nuclear power plants. In Pollution assessment for sustainable practices in applied sciences and engineering (pp. 1027–1053). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-809582-9.00020-7
- [92] Candeias, C., Ávila, P., Coelho, P., & Teixeira, J. P. (2019). Mining activities: Health impacts. In Encyclopedia of environmental health (pp. 415–435). Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11056-5
- [93] Bharti, M., Aftab Alam, M., Koteswara Rao, G. S. N., & Kumar Sharma, P. (2023). A brief review of radioactive materials for therapeutic and diagnostic purposes. Current radiopharmaceuticals, 16(1), 23–37. https://doi.org/10.2174/1874471016666221028110222
- [94] Darda, S. A., Gabbar, H. A., Damideh, V., Aboughaly, M., & Hassen, I. (2021). A comprehensive review on radioactive waste cycle from generation to disposal. Journal of radioanalytical and nuclear chemistry, 329(1), 15–31. https://doi.org/10.1007/s10967-021-07764-2
- [95] Aniebone, A., Chukwu-Okeah, V. O., & Adegbie, G. O. (2020). Radionuclide actions, processes and presence in water and sediments, a review. International Journal of Ground Sediment & Water, 10, 559–571. https://doi.org/10.5281/zenodo.4029785
- [96] Schunck, N., & Regnier, D. (2022). Theory of nuclear fission. Progress in particle and nuclear physics, 125, 103963. https://doi.org/10.1016/j.ppnp.2022.103963
- [97] Gsponer, A., & Hurni, J. P. (2008). Nuclear weapons proliferation implications of thermonuclear-fusion energy systems. Independent scientific research institute, geneva, switzerland, 30. https://B2n.ir/rd3723
- [98] Ayres, R. U. (2021). Nuclear power. In The history and future of technology: Can technology save humanity from extinction? (pp. 589–621). Springer. https://doi.org/10.1007/978-3-030-71393-5_22
- [99] Luo, S. (2023). Preparation of radionuclides. In Nuclear science and technology: Isotopes and radiation (pp. 31–90). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3087-6_2
- [100] Munzeiwa, W. A., Ruziwa, D. T., & Chaukura, N. (2022). Environmental pollutants: Metal(loid)s and radionuclides. In Biotechnology for environmental protection (pp. 1–23). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-4937-1_1
- [101] Thakare, M., Sarma, H., Datar, S., Roy, A., Pawar, P., Gupta, K., … ., & Prasad, R. (2021). Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Current research in biotechnology, 3, 84–98. https://doi.org/10.1016/j.crbiot.2021.02.004
- [102] Liu, S., He, Y., Xie, H., Ge, Y., Lin, Y., Yao, Z., … ., Wang, B. (2022). A state-of-the-art review of radioactive decontamination technologies: facing the upcoming wave of decommissioning and dismantling of nuclear facilities. Sustainability, 14(7), 4021. https://doi.org/10.3390/su14074021
- [103] Balaram, V., Rani, A., & Rathore, D. P. S. (2022). Uranium in groundwater in parts of India and world: A comprehensive review of sources, impact to the environment and human health, analytical techniques, and mitigation technologies. Geosystems and geoenvironment, 1(2), 100043. https://doi.org/10.1016/j.geogeo.2022.100043
- [104] Olobatoke, R. Y., & Mathuthu, M. (2015). Radionuclide exposure in animals and the public health implications. Turkish journal of veterinary & animal sciences, 39(4), 381–388. http://dx.doi.org/10.3906/vet-1502-85
- [105] Bhalara, P. D., Punetha, D., & Balasubramanian, K. (2014). A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment. Journal of environmental chemical engineering, 2(3), 1621–1634. https://doi.org/10.1016/j.jece.2014.06.007
- [106] Hemming, S. D., Purkis, J. M., Warwick, P. E., & Cundy, A. B. (2023). Current and emerging technologies for the remediation of difficult-to-measure radionuclides at nuclear sites. Environmental science: Processes & impacts, 25(12), 1909–1925. https://doi.org/10.1039/D3EM00190C
- [107] Landa, E. R. (2007). Naturally occurring radionuclides from industrial sources: Characteristics and fate in the environment. Radioactivity in the terrestrial environment, 10, 211–237. https://doi.org/10.1016/S1569-4860(06)10010-8
- [108] Thakur, A., & Kumar, A. (2024). Emerging paradigms into bioremediation approaches for nuclear contaminant removal: From challenge to solution. Chemosphere, 352, 141369. https://doi.org/10.1016/j.chemosphere.2024.141369
- [109] Dinis, M. de L., & Fiúza, A. (2021). Mitigation of uranium mining impacts—a review on groundwater remediation technologies. Geosciences, 11(6), 250. https://doi.org/10.3390/geosciences11060250
- [110] Yadav, R., Ali, M., Kumar, A., & Pandey, B. N. (2017). Mechanism of carcinogenesis after exposure of actinide radionuclides: Emerging concepts and missing links. Journal of radiation and cancer research, 8(1), 20–34. http://dx.doi.org/10.4103/0973-0168.199304
- [111] Saeed, J. J., Hasan, M. J., Rasheed, H. A., Ajmi, D. R., & Ati, E. M. (2023). The dangers of ionizing radiation that affect human safety and the environment: A review article. Texas journal of medical science, 26, 151–160. http://dx.doi.org/10.62480/tjms.2023.vol26.pp151-160
- [112] Creager, A. N. H. (2006). Nuclear energy in the service of biomedicine: The U.S. atomic energy commission’s radioisotope program, 1946–1950. Journal of the history of biology, 39(4), 649–684. https://doi.org/10.1007/s10739-006-9108-2
- [113] Gaffney, J. S., & Marley, N. A. (2009). The impacts of combustion emissions on air quality and climate – From coal to biofuels and beyond. Atmospheric environment, 43(1), 23–36. https://doi.org/10.1016/j.atmosenv.2008.09.016
- [114] Madhav, S., Ahamad, A., Singh, A. K., Kushawaha, J., Chauhan, J. S., Sharma, S., & Singh, P. (2020). Water pollutants: Sources and impact on the environment and human health. In Sensors in water pollutants monitoring: Role of material (pp. 43–62). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-0671-0_4
- [115] Burdick, S. J., Wagner, J. C., & Gehin, J. C. (2023). Recommendations to Improve the Nuclear Regulatory Commission Reactor Licensing and Approval Process.
- [116] Grasso, D. (2017). Comprehensive environmental response, compensation, and liability act (CERCLA). In Hazardous waste site remediation (pp. 27–46). Routledge. https://doi.org/10.1201/9780203752265
- [117] López, P. O., Rajan, G., & Podgorsak, E. B. (2005). Radiation protection and safety in radiotherapy. In Radiation oncology physics: A handbook for teachers and students (pp. 604–605). Citeseer. https://B2n.ir/uw9786
- [118] Jones, C. G. (2019). The US nuclear regulatory commission radiation protection policy and opportunities for the future. Journal of radiological protection, 39(4), R51. https://doi.org/10.1088/1361-6498/ab1d75
- [119] Udoh, V. E., Ekanem, I. I., & Ikpe, A. E. (2024). A review of welding and fabrication processes and resulting impacts on environmental sustainability: Risk and control measures. Risk assessment and management decisions, 1(1), 142–153. https://doi.org/10.48314/ramd.v1i1.40
- [120] Karim, R., & Lee, E. Y. J. (2023). The global quest for nuclear safety, security, safeguard, and liability: An analysis of international legal and regulatory framework for nuclear energy. In Navigating nuclear energy lawmaking for newcomers: An Asian perspective (pp. 59–99). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-5708-8_3
- [121] Helperin, A. N., Beckman, D. S., Inwood, D., Ledwith, V., & Blankenburg, W. (2001). California’s contaminated groundwater. Natural resources defense council, 4, 3–18. https://B2n.ir/rt4188