An Appraisal on the Dynamics of Radionuclides Contamination Matrix: A Generic Review of Radioactive Assessment in Environmental Health

Authors

https://doi.org/10.22105/ahse.v1i1.24

Abstract

Radionuclides contamination poses a significant threat to environmental health. This contamination matrix can harm ecosystems, including biodiversity loss, food chain disruption, environmental degradation, and genetic mutations in plants and animals. In addition, exposure to radioactive contaminants can increase the risk of cancer, congenital disabilities, and other health problems in humans. This necessitated a comprehensive review of radionuclide elements, key substances, sources, properties, decay constants, decay rate, half-life, dose-response relationship, exposure pathways, measuring techniques, recorded accidents, human activities, detection and remediation strategies, policies, regulations and models on radioactive contaminants. This study employed a qualitative research approach, focusing on a review of existing literature on radionuclide contamination and assessment approaches. The literature review included peer-reviewed articles, research reports, and publications related to radioactive assessment—an analysis of the literature aimed at identifying common themes and trends in assessing radionuclide contamination. The findings revealed several key issues in determining radionuclide contamination, including the lack of standardized assessment protocols, limited availability of data on radionuclide Contamination, and the challenges in predicting the long-term effects of radioactive materials on environmental health. Moreover, it was noted that some radionuclides have half-lives of thousands of years, indicating long-term persistence that can make it challenging to remediate contaminated sites and mitigate the impacts of environmental radioactive Contamination. The study suggests that addressing these issues can improve the accuracy and reliability of radioactive assessment, ultimately leading to better environmental health protection from the impacts of radionuclide Contamination.

Keywords:

Radioactive assessment, Remediation techniques, Environmental health, Radionuclides contamination, Policies and regulations

References

  1. [1] Deng, D., Zhang, L., Dong, M., Samuel, R. E., Ofori-Boadu, A., & Lamssali, M. (2020). Radioactive waste: A review. Water environment research, 92(10), 1818–1825. https://doi.org/10.1002/wer.1442

  2. [2] Ekanem, I. I., Bassey, M. O., & Ikpe, A. E. (2024). Assessing the impact of radioactive contamination in groundwater and environmental quality: A comparative study of remediation technique. Risk assessment and management decisions, 1(2), 209–226. https://doi.org/10.48314/ramd.v1i2.39

  3. [3] Li, P., Karunanidhi, D., Subramani, T., & Srinivasamoorthy, K. (2021). Sources and consequences of groundwater contamination. Archives of environmental contamination and toxicology, 80(1), 1–10. https://doi.org/10.1007/s00244-020-00805-z

  4. [4] Huysegoms, L., & Cappuyns, V. (2017). Critical review of decision support tools for sustainability assessment of site remediation options. Journal of environmental management, 196, 278–296. https://doi.org/10.1016/j.jenvman.2017.03.002

  5. [5] Rizzo, E., Bardos, P., Pizzol, L., Critto, A., Giubilato, E., Marcomini, A., … . & Smith, G. (2016). Comparison of international approaches to sustainable remediation. Journal of environmental management, 184, 4–17. https://doi.org/10.1016/j.jenvman.2016.07.062

  6. [6] Korede, O. G., Akinyemi, O. O., & Oshilalu, A. Z. (2023). Environmental and ecological impact of radioactive waste disposal. World journal of advanced research and reviews, 18(2), 1419–1439. https://doi.org/10.30574/wjarr.2023.18.2.0728

  7. [7] Sharma, R., Adhoni, S. A., & Vaijinath, P. (2023). Soil matters: Uncovering the impact of contamination on earth’s foundation. Shineeks Publishers. https://B2n.ir/ku5865

  8. [8] Ndifreke, E. I., Imoh, I. E., & Eyo, S. A. (2024). Assessment of medical waste disposal and environmental implications in Uyo city metropolis. FUPRE journal of scientific and industrial research, 8(3), 296–307. https://www.researchgate.net/publication/385888049

  9. [9] Ekanem, I. I., Ikpe, A. E., & Ikpe, E. O. (2024). The menace of plastic waste in nigeria and its management techniques in the 21st century. Systemic analytics, 2(2), 200–217. https://doi.org/10.31181/sa22202418

  10. [10] Song, Y., Hou, D., Zhang, J., O’Connor, D., Li, G., Gu, Q., … ., & Liu, P. (2018). Environmental and socio-economic sustainability appraisal of contaminated land remediation strategies: A case study at a mega-site in China. Science of the total environment, 610–611, 391–401. https://doi.org/10.1016/j.scitotenv.2017.08.016

  11. [11] Sam, K., Coulon, F., & Prpich, G. (2017). Management of petroleum hydrocarbon contaminated sites in Nigeria: Current challenges and future direction. Land use policy, 64, 133–144. https://doi.org/10.1016/j.landusepol.2017.01.051

  12. [12] Rathi, B. S., Kumar, P. S., & Vo, D. V. N. (2021). Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Science of the total environment, 797, 149134. https://doi.org/10.1016/j.scitotenv.2021.149134

  13. [13] Kuppan, N., Padman, M., Mahadeva, M., Srinivasan, S., & Devarajan, R. (2024). A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste management bulletin, 2(3), 154–171. https://doi.org/10.1016/j.wmb.2024.07.005

  14. [14] Kumar, V., Shahi, S. K., & Singh, S. (2018). Bioremediation: An eco-sustainable approach for restoration of contaminated sites. In Microbial bioprospecting for sustainable development (pp. 115–136). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-0053-0_6

  15. [15] Diarra, I., Kotra, K. K., & Prasad, S. (2022). Application of phytoremediation for heavy metal contaminated sites in the South Pacific: Strategies, current challenges and future prospects. Applied spectroscopy reviews, 57(6), 490–512. https://doi.org/10.1080/05704928.2021.1904410

  16. [16] Baklanov, A. (2007). Environmental risk and assessment modelling -- scientific needs and expected advancements. Air, water and soil quality modelling for risk and impact assessment (pp. 29–44). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-5877-6_3

  17. [17] Karmaker, N., Maraz, K. M., Islam, F., Haque, M. M., Razzak, M., Mollah, M., … ., & Khan, R. A. (2021). Fundamental characteristics and application of radiation. GSC advanced research and reviews, 7(1), 64–72. https://doi.org/10.30574/gscarr.2021.7.1.0043

  18. [18] L’Annunziata, M. F. (2020). The atomic nucleus, nuclear radiation, and the interaction of radiation with matter. In Handbook of radioactivity analysis (pp. 1–243). Academic Press. https://doi.org/10.1016/B978-0-12-814397-1.00001-7

  19. [19] Vallabhajosula, S. (2023). Production of radionuclides. In Molecular imaging and targeted therapy: Radiopharmaceuticals and clinical applications (pp. 147–183). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-23205-3_8

  20. [20] Verma, D. K., Rameshwari, R., & Meena, J. (2025). Health and environmental risk of alpha emitter radium. In Hazardous chemicals (pp. 713–722). Academic Press. https://doi.org/10.1016/B978-0-323-95235-4.00015-3

  21. [21] Pathak, A. (2023). Interaction of radiation with matter. In Tools and techniques in radiation biophysics (pp. 75–92). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-6086-6_5

  22. [22] Dragović, S., Yamauchi, M., Aoyama, M., Kajino, M., Petrović, J., Ćujić, M., … ., & Bór, J. (2020). Synthesis of studies on significant atmospheric electrical effects of major nuclear accidents in Chernobyl and Fukushima. Science of the total environment, 733, 139271. https://doi.org/10.1016/j.scitotenv.2020.139271

  23. [23] Abubakr, A., Othman, A. I., & Ewedah, T. M. (2024). The applications of radioisotopes in modern medicine: A review of diagnostic, therapeutic, and research advancements. ERU research journal, 3(4), 1680–1694. https://dx.doi.org/10.21608/erurj.2024.294087.1157

  24. [24] Gupta, P. K. (2020). Radiation and radioactive materials. In Problem solving questions in toxicology: A study guide for the board and other examinations (pp. 241–251). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-50409-0_19

  25. [25] Aghevlian, S., Boyle, A. J., & Reilly, R. M. (2017). Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Advanced drug delivery reviews, 109, 102–118. https://doi.org/10.1016/j.addr.2015.12.003

  26. [26] Gupta, T. K. (2013). Nuclear radiation, ionization, and radioactivity. In Radiation, ionization, and detection in nuclear medicine (pp. 1–57). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-34076-5_1

  27. [27] Podgorsak, E. B. (2013). Modes of radioactive decay. In Compendium to radiation physics for medical physicists: 300 problems and solutions (pp. 693–786). Springer Science & Business Media. https://link.springer.com/book/10.1007/978-3-642-20186-8

  28. [28] Qaim, S. M., Scholten, B., Spahn, I., & Neumaier, B. (2019). Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use. Radiochimica acta, 107(9), 1011–1026. https://doi.org/10.1515/ract-2019-3154

  29. [29] Nichols, A. L. (2001). Decay data: Review of measurements, evaluations and compilations. Applied radiation and isotopes, 55(1), 23–70. https://doi.org/10.1016/S0969-8043(00)00382-1

  30. [30] Pommé, S. (2022). Radionuclide metrology: Confidence in radioactivity measurements. Journal of radioanalytical and nuclear chemistry, 331(12), 4771–4798. https://doi.org/10.1007/s10967-022-08494-9

  31. [31] Pommé, S. (2015). The uncertainty of the half-life. Metrologia, 52(3), S51. http://dx.doi.org/10.1088/0026-1394/52/3/S51

  32. [32] Heinitz, S., Kajan, I., & Schumann, D. (2022). How accurate are half-life data of long-lived radionuclides? Radiochimica acta, 110(6), 589–608. https://doi.org/10.1515/ract-2021-1135

  33. [33] Pfützner, M., Karny, M., Grigorenko, L. V, & Riisager, K. (2012). Radioactive decays at limits of nuclear stability. Reviews of modern physics, 84(2), 567–619. https://doi.org/10.1103/RevModPhys.84.567

  34. [34] Saha, G. B. (2010). Radioactive decay. In Fundamentals of nuclear pharmacy (pp. 11–31). Springer. https://doi.org/10.1007/978-1-4419-5860-0_2

  35. [35] Elaboudi, Z., Madinzi, A., Saadi, R., Laissaoui, A., Kurniawan, T. A., Anouzla, A., & Souabi, S. (2024). A review of radionuclides impacts and remediation techniques. Euro-mediterranean journal for environmental integration, 1–17. https://doi.org/10.1007/s41207-024-00613-0

  36. [36] Rajkhowa, S., Sarma, J., & Rani Das, A. (2021). Radiological contaminants in water: pollution, health risk, and treatment. In Contamination of water (pp. 217–236). Academic Press. https://doi.org/10.1016/B978-0-12-824058-8.00013-X

  37. [37] kizi, M. A. A., Mamajonovich, Y. M., & Tolkinjanovna, A. F. (2024). Contamination of the environment with radioactive substances and effect on the human body. Miasto przyszłości, 49, 1245–1248. https://miastoprzyszlosci.com.pl/index.php/mp/article/view/4118

  38. [38] Jeskovsky, M., Kaizer, J., Kontuĺ, I., Lujanienė, G., Mullerova, M., & Povinec, P. (2019). Analysis of environmental radionuclides. In Handbook of radioactivity analysis (pp. 137–261). Academic Press. http://dx.doi.org/10.1016/b978-0-12-814395-7.00003-9

  39. [39] Salbu, B., Kashparov, V., Lind, O. C., Garcia-Tenorio, R., Johansen, M. P., Child, D. P., … ., & Sancho, C. (2018). Challenges associated with the behaviour of radioactive particles in the environment. Journal of environmental radioactivity, 186, 101–115. https://doi.org/10.1016/j.jenvrad.2017.09.001

  40. [40] Yang, H., Feng, Q., Xu, W., Tang, Y., Bai, G., Liu, Y., … ., & Zhang, Y. (2024). Unraveling the nuclear isotope tapestry: Applications, challenges, and future horizons in a dynamic landscape. Eco-environment & health, 3(2), 208–226. https://doi.org/10.1016/j.eehl.2024.01.001

  41. [41] Yadav, V. B., Pulhani, V., & Jha, S. K. (2024). Climate change and its impact on the fate of radioactivity in the environment. In Handbook on radiation environment (pp. 189–217). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-2795-7_7

  42. [42] Geras’kin, S., Evseeva, T., & Oudalova, A. (2013). Effects of long-term chronic exposure to radionuclides in plant populations. Journal of environmental radioactivity, 121, 22–32. https://doi.org/10.1016/j.jenvrad.2012.03.007

  43. [43] Kamiya, K., Ozasa, K., Akiba, S., Niwa, O., Kodama, K., Takamura, N., … ., & Wakeford, R. (2015). Long-term effects of radiation exposure on health. The lancet, 386(9992), 469–478. https://doi.org/10.1016/S0140-6736(15)61167-9

  44. [44] Chaturvedi, A., & Jain, V. (2019). Effect of ionizing radiation on human health. International journal of plant and environment, 5(03), 200–205. http://dx.doi.org/10.18811/ijpen.v5i03.8

  45. [45] D. Brugge, J.L. deLemos, & B. Oldmixon. (2005). Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: A review. Reviews on environmental health, 20(3), 177–194. https://doi.org/10.1515/REVEH.2005.20.3.177

  46. [46] Mettler, F. A. J., Gus’kova, A. K., & Gusev, I. (2007). Health Effects in Those with Acute Radiation Sickness from the Chernobyl Accident. Health physics, 93(5), 462–469. https://doi.org/10.1097/01.hp.0000278843.27969.74

  47. [47] Alcocer, G., Alcocer, P., & Marquez, C. (2020). Burns by ionizing and nonionizing radiation. Journal of burn care & research, 45(6), 1464–1472. https://doi.org/10.1093/jbcr/iraa180

  48. [48] Arciszewska, Ż., Gama, S., Leśniewska, B., Malejko, J., Nalewajko-Sieliwoniuk, E., Zambrzycka-Szelewa, E., & Godlewska-Żyłkiewicz, B. (2022). The translocation pathways of rare earth elements from the environment to the food chain and their impact on human health. Process safety and environmental protection, 168, 205–223. https://doi.org/10.1016/j.psep.2022.09.056

  49. [49] Afzaal, M., Hameed, S., Liaqat, I., Ali Khan, A. A., abdul Manan, H., Shahid, R., & Altaf, M. (2022). Heavy metals contamination in water, sediments and fish of freshwater ecosystems in Pakistan. Water practice & technology, 17(5), 1253–1272. https://doi.org/10.2166/wpt.2022.039

  50. [50] Dhanekar, S., & Rangra, K. (2021). Wearable dosimeters for medical and defence applications: A state of the art review. Advanced materials technologies, 6(5), 2000895. https://doi.org/10.1002/admt.202000895

  51. [51] Damulira, E., Yusoff, M. N. S., Omar, A. F., & Mohd Taib, N. H. (2019). A review: Photonic devices used for dosimetry in medical radiation. Sensors, 19(10), 2226. https://doi.org/10.3390/s19102226

  52. [52] de Ceuninck, M., Philip, M., Stefaan, van de W., Bernard, B., Rik, H., Francis, S., & Dujardin, K. (2019). A quality project for radiation reduction in the cath lab. ACTA cardiologica, 74(1), 38–44. https://doi.org/10.1080/00015385.2018.1439705

  53. [53] Fathy, M. H., Shaban, F., Fawzy, T. M., Nguyen, D. V., & Eldosouky, A. M. (2024). Spectroscopic techniques for detecting naturally occurring radioactive nuclides in geology and water: A comprehensive review and health implications. Journal of geography and cartography, 7(2), 6909. https://doi.org/10.24294/jgc.v7i2.6909

  54. [54] Bodin, L., & Menetrier, F. (2021). Treatment of radiological contamination: A review. Journal of radiological protection, 41(4), S427. https://dx.doi.org/10.1088/1361-6498/ac241b

  55. [55] Butt, M. A., Voronkov, G. S., Grakhova, E. P., Kutluyarov, R. V, Kazanskiy, N. L., & Khonina, S. N. (2022). Environmental monitoring: A comprehensive review on optical waveguide and fiber-based sensors. Biosensors, 12(11), 1038. https://doi.org/10.3390/bios12111038

  56. [56] Obrador, E., Salvador-Palmer, R., Villaescusa, J. I., Gallego, E., Pellicer, B., Estrela, J. M., & Montoro, A. (2022). Nuclear and radiological emergencies: Biological effects, countermeasures and biodosimetry. Antioxidants, 11(6), 1098. https://doi.org/10.3390/antiox11061098

  57. [57] Boniardi, L., Campo, L., Olgiati, L., Longhi, F., Scuffi, C., & Fustinoni, S. (2023). Biological monitoring and personal exposure to traffic-related air pollutants of elementary school-age children living in a metropolitan area. Science of the total environment, 857, 159654. https://doi.org/10.1016/j.scitotenv.2022.159654

  58. [58] Alwaeli, M., & Mannheim, V. (2022). Investigation into the current state of nuclear energy and nuclear waste management—a state-of-the-art review. Energies, 15(12), 4275. https://doi.org/10.3390/en15124275

  59. [59] Rasheed, P. A., Nayar, S. K., Barsoum, I., & Alfantazi, A. (2022). Degradation of concrete structures in nuclear power plants: A review of the major causes and possible preventive measures. Energies, 15(21), 8011. https://doi.org/10.3390/en15218011

  60. [60] Hoheisel, M. (2006). Review of medical imaging with emphasis on X-ray detectors. Nuclear instruments and methods in physics research section A: Accelerators, spectrometers, detectors and associated equipment, 563(1), 215–224. https://doi.org/10.1016/j.nima.2006.01.123

  61. [61] Ogiela, M. R., & Tadeusiewicz, R. (2008). Sources of medical images and their general characteristics. In Modern computational intelligence methods for the interpretation of medical images (pp. 7–45). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-75402-2_2

  62. [62] Falck, W. E. (2015). Radioactive and other environmental contamination from uranium mining and milling. In Environmental remediation and restoration of contaminated nuclear and norm sites (pp. 3–34). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-231-0.00001-6

  63. [63] Jha, S. K., Patra, A. C., Verma, G. P., Iyer, I. S., & Aswal, D. K. (2024). Natural radiation and environment. In Handbook on radiation environment (pp. 27–72). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-2795-7_2

  64. [64] Nunes, L. J. R., Curado, A., & Lopes, S. I. (2023). The relationship between radon and geology: Sources, transport and indoor accumulation. Applied sciences, 13(13), 7460. https://doi.org/10.3390/app13137460

  65. [65] Prăvălie, R. (2014). Nuclear weapons tests and environmental consequences: A global perspective. AMBIO, 43(6), 729–744. https://doi.org/10.1007/s13280-014-0491-1

  66. [66] Steinhauser, G., Brandl, A., & Johnson, T. E. (2014). Comparison of the chernobyl and fukushima nuclear accidents: A review of the environmental impacts. Science of the total environment, 470, 800–817. https://doi.org/10.1016/j.scitotenv.2013.10.029

  67. [67] Subba Rao, T., Panigrahi, S., & Velraj, P. (2022). Transport and disposal of radioactive wastes in nuclear industry. In Microbial biodegradation and bioremediation (pp. 419–440). Elsevier. https://doi.org/10.1016/B978-0-323-85455-9.00027-8

  68. [68] Chapman, N., & Hooper, A. (2012). The disposal of radioactive wastes underground. Proceedings of the geologists’ association, 123(1), 46-63. https://doi.org/10.1016/j.pgeola.2011.10.001

  69. [69] Ruiz-Fresneda, M. A., Martinez-Moreno, M. F., Povedano-Priego, C., Morales-Hidalgo, M., Jroundi, F., & Merroun, M. L. (2023). Impact of microbial processes on the safety of deep geological repositories for radioactive waste. Frontiers in microbiology, 14, 1134078. https://doi.org/10.3389/fmicb.2023.1134078

  70. [70] Ma, M., Wang, R., Xu, L., Xu, M., & Liu, S. (2020). Emerging health risks and underlying toxicological mechanisms of uranium contamination: Lessons from the past two decades. Environment international, 145, 106107. https://doi.org/10.1016/j.envint.2020.106107

  71. [71] Sarkar, A. (2019). Nuclear power and uranium mining: current global perspectives and emerging public health risks. Journal of public health policy, 40(4), 383–392. https://doi.org/10.1057/s41271-019-00177-2

  72. [72] Romanov, S. A., Efimov, А. V., Aladova, Е. Е., Suslova, К. G., Kuznetsova, I. S., Sokolova, А. В., … ., & Khokhryakov, V. F. (2020). Plutonium production and particles incorporation into the human body. Journal of environmental radioactivity, 211, 106073. https://doi.org/10.1016/j.jenvrad.2019.106073

  73. [73] Tirmarche, M., Apostoaei, I., Blanchardon, E., Ellis, E. D., Gilbert, E., Harrison, J. D., … ., Zhivin, S. (2021). ICRP publication 150: Cancer risk from exposure to plutonium and uranium. Annals of the international commission on radiological protection, 50(4), 1–143. https://doi.org/10.1177/01466453211028020

  74. [74] Ashraf, M. A., Akib, S., Maah, M. J., Yusoff, I., & Balkhair, K. S. (2014). Cesium-137: Radio-chemistry, fate, and transport, remediation, and future concerns. Critical reviews in environmental science and technology, 44(15), 1740–1793. https://doi.org/10.1080/10643389.2013.790753

  75. [75] Al-Tameemi, N. H. A. (2010). Assessment of cancer risk to the human tissues related to public exposure to Cesium-137. Al-mustansiriyah journal of science, 21(6).

  76. [76] Chakravarty, R., & Dash, A. (2012). Availability of yttrium-90 from strontium-90: A nuclear medicine perspective. Cancer biotherapy and radiopharmaceuticals, 27(10), 621–641. https://doi.org/10.1089/cbr.2012.1285

  77. [77] Braverman, E. R., Blum, K., Loeffke, B., Baker, R., Kreuk, F., Yang, S. P., & Hurley, J. R. (2015). Managing terrorism or accidental nuclear errors, preparing for Iodine-131 emergencies: A comprehensive review. In Anti-aging therapeutics volume xvii. A4M American Academy of Anti-Aging Medicine. http://dx.doi.org/10.3390/ijerph110404158

  78. [78] Anderson, P. D., & Bokor, G. (2013). Nuclear and radiological terrorism: Continuing education article. Journal of pharmacy practice, 26(3), 171–182. https://doi.org/10.1177/0897190012474238

  79. [79] Nieder, R., Benbi, D. K., & Reichl, F. X. (2018). Health risks associated with radionuclides in soil materials. In Soil components and human health (pp. 451–501). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-024-1222-2_9

  80. [80] Nie, B., Fang, S., Jiang, M., Wang, L., Ni, M., Zheng, J., … ., & Li, F. (2021). Anthropogenic tritium: Inventory, discharge, environmental behavior and health effects. Renewable and sustainable energy reviews, 135, 110188. https://doi.org/10.1016/j.rser.2020.110188

  81. [81] Dobrzyńska, M., Gajowik, A., & Wieprzowski, K. (2023). Radon - occurrence and impact on the health. Roczniki panstwowego zakladu higieny, 74(1), 5–14. http://dx.doi.org/10.32394/rpzh.2023.0242

  82. [82] Manawi, Y., Hassan, A., Atieh, M. A., & Lawler, J. (2024). Overview of radon gas in groundwater around the world: Health effects and treatment technologies. Journal of environmental management, 368, 122176. https://doi.org/10.1016/j.jenvman.2024.122176

  83. [83] Bhatt, D., Kumar, R., Kumar, R., & Prakash, O. (2025). Health effects and toxicity mechanism of thorium: Knowledge gaps and research prospects. In Hazardous chemicals (pp. 729–740). Academic Press. https://doi.org/10.1016/B978-0-323-95235-4.00009-8

  84. [84] Naja, G. M., & Volesky, B. (2017). Toxicity and sources of Pb, Cd, Hg, Cr, As, and radionuclides in the environment. In Handbook of advanced industrial and hazardous wastes management (pp. 855–903). Crc Press. https://doi.org/10.1201/9781315117423

  85. [85] Eidemüller, D. (2021). Radioactive incidents and disasters. In Nuclear power explained (pp. 195–240). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-72670-6_10

  86. [86] Rhodes, C. J. (2014). The fukushima daiichi nuclear accident. Science progress, 97(1), 72–86. https://doi.org/10.3184/003685014X13904938571454

  87. [87] Degteva, M. O., Vorobiova, M. I., Shagina, N. B., Shishkina, E. A., Anspaugh, L. R., & Napier, B. A. (2008). A review of data on releases of radioactive wastes from the Mayak Production Association into the Techa River in 1949--1956. Report on ISTC project, 2841. https://b2n.ir/jb2889

  88. [88] Edwards, F. L. (2017). Emergency management for radiological events: Lessons learned from three mile Island, Chernobyl, and Fukushima reactor accidents. In Crisis and emergency management (pp. 245–264). Routledge. https://doi.org/10.4324/9781315095264

  89. [89] Leigh, W. J., & Wakeford, R. (2001). Radiation litigation and the nuclear industry-the experience in the United Kingdom. Health physics, 81(6), 646–654. https://doi.org/10.1097/00004032-200112000-00014

  90. [90] Hassun, J. M., Zanatta-Kline, M. J., Kawaguchi, M., Hendricks, M. B. D., Zahner, O., Bustos-Ortiz, R., … ., & Ahmed, Z. H. (2022). Loom of the future: Nuclear decolonization and uw. http://hdl.handle.net/1773/51509

  91. [91] Iqbal, J., M. Howari, F., Mohamed, A. M. O., & Paleologos, E. K. (2021). Assessment of radiation pollution from nuclear power plants. In Pollution assessment for sustainable practices in applied sciences and engineering (pp. 1027–1053). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-809582-9.00020-7

  92. [92] Candeias, C., Ávila, P., Coelho, P., & Teixeira, J. P. (2019). Mining activities: Health impacts. In Encyclopedia of environmental health (pp. 415–435). Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.11056-5

  93. [93] Bharti, M., Aftab Alam, M., Koteswara Rao, G. S. N., & Kumar Sharma, P. (2023). A brief review of radioactive materials for therapeutic and diagnostic purposes. Current radiopharmaceuticals, 16(1), 23–37. https://doi.org/10.2174/1874471016666221028110222

  94. [94] Darda, S. A., Gabbar, H. A., Damideh, V., Aboughaly, M., & Hassen, I. (2021). A comprehensive review on radioactive waste cycle from generation to disposal. Journal of radioanalytical and nuclear chemistry, 329(1), 15–31. https://doi.org/10.1007/s10967-021-07764-2

  95. [95] Aniebone, A., Chukwu-Okeah, V. O., & Adegbie, G. O. (2020). Radionuclide actions, processes and presence in water and sediments, a review. International Journal of Ground Sediment & Water, 10, 559–571. https://doi.org/10.5281/zenodo.4029785

  96. [96] Schunck, N., & Regnier, D. (2022). Theory of nuclear fission. Progress in particle and nuclear physics, 125, 103963. https://doi.org/10.1016/j.ppnp.2022.103963

  97. [97] Gsponer, A., & Hurni, J. P. (2008). Nuclear weapons proliferation implications of thermonuclear-fusion energy systems. Independent scientific research institute, geneva, switzerland, 30. https://B2n.ir/rd3723

  98. [98] Ayres, R. U. (2021). Nuclear power. In The history and future of technology: Can technology save humanity from extinction? (pp. 589–621). Springer. https://doi.org/10.1007/978-3-030-71393-5_22

  99. [99] Luo, S. (2023). Preparation of radionuclides. In Nuclear science and technology: Isotopes and radiation (pp. 31–90). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3087-6_2

  100. [100] Munzeiwa, W. A., Ruziwa, D. T., & Chaukura, N. (2022). Environmental pollutants: Metal(loid)s and radionuclides. In Biotechnology for environmental protection (pp. 1–23). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-4937-1_1

  101. [101] Thakare, M., Sarma, H., Datar, S., Roy, A., Pawar, P., Gupta, K., … ., & Prasad, R. (2021). Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Current research in biotechnology, 3, 84–98. https://doi.org/10.1016/j.crbiot.2021.02.004

  102. [102] Liu, S., He, Y., Xie, H., Ge, Y., Lin, Y., Yao, Z., … ., Wang, B. (2022). A state-of-the-art review of radioactive decontamination technologies: facing the upcoming wave of decommissioning and dismantling of nuclear facilities. Sustainability, 14(7), 4021. https://doi.org/10.3390/su14074021

  103. [103] Balaram, V., Rani, A., & Rathore, D. P. S. (2022). Uranium in groundwater in parts of India and world: A comprehensive review of sources, impact to the environment and human health, analytical techniques, and mitigation technologies. Geosystems and geoenvironment, 1(2), 100043. https://doi.org/10.1016/j.geogeo.2022.100043

  104. [104] Olobatoke, R. Y., & Mathuthu, M. (2015). Radionuclide exposure in animals and the public health implications. Turkish journal of veterinary & animal sciences, 39(4), 381–388. http://dx.doi.org/10.3906/vet-1502-85

  105. [105] Bhalara, P. D., Punetha, D., & Balasubramanian, K. (2014). A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment. Journal of environmental chemical engineering, 2(3), 1621–1634. https://doi.org/10.1016/j.jece.2014.06.007

  106. [106] Hemming, S. D., Purkis, J. M., Warwick, P. E., & Cundy, A. B. (2023). Current and emerging technologies for the remediation of difficult-to-measure radionuclides at nuclear sites. Environmental science: Processes & impacts, 25(12), 1909–1925. https://doi.org/10.1039/D3EM00190C

  107. [107] Landa, E. R. (2007). Naturally occurring radionuclides from industrial sources: Characteristics and fate in the environment. Radioactivity in the terrestrial environment, 10, 211–237. https://doi.org/10.1016/S1569-4860(06)10010-8

  108. [108] Thakur, A., & Kumar, A. (2024). Emerging paradigms into bioremediation approaches for nuclear contaminant removal: From challenge to solution. Chemosphere, 352, 141369. https://doi.org/10.1016/j.chemosphere.2024.141369

  109. [109] Dinis, M. de L., & Fiúza, A. (2021). Mitigation of uranium mining impacts—a review on groundwater remediation technologies. Geosciences, 11(6), 250. https://doi.org/10.3390/geosciences11060250

  110. [110] Yadav, R., Ali, M., Kumar, A., & Pandey, B. N. (2017). Mechanism of carcinogenesis after exposure of actinide radionuclides: Emerging concepts and missing links. Journal of radiation and cancer research, 8(1), 20–34. http://dx.doi.org/10.4103/0973-0168.199304

  111. [111] Saeed, J. J., Hasan, M. J., Rasheed, H. A., Ajmi, D. R., & Ati, E. M. (2023). The dangers of ionizing radiation that affect human safety and the environment: A review article. Texas journal of medical science, 26, 151–160. http://dx.doi.org/10.62480/tjms.2023.vol26.pp151-160

  112. [112] Creager, A. N. H. (2006). Nuclear energy in the service of biomedicine: The U.S. atomic energy commission’s radioisotope program, 1946–1950. Journal of the history of biology, 39(4), 649–684. https://doi.org/10.1007/s10739-006-9108-2

  113. [113] Gaffney, J. S., & Marley, N. A. (2009). The impacts of combustion emissions on air quality and climate – From coal to biofuels and beyond. Atmospheric environment, 43(1), 23–36. https://doi.org/10.1016/j.atmosenv.2008.09.016

  114. [114] Madhav, S., Ahamad, A., Singh, A. K., Kushawaha, J., Chauhan, J. S., Sharma, S., & Singh, P. (2020). Water pollutants: Sources and impact on the environment and human health. In Sensors in water pollutants monitoring: Role of material (pp. 43–62). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-0671-0_4

  115. [115] Burdick, S. J., Wagner, J. C., & Gehin, J. C. (2023). Recommendations to Improve the Nuclear Regulatory Commission Reactor Licensing and Approval Process.

  116. [116] Grasso, D. (2017). Comprehensive environmental response, compensation, and liability act (CERCLA). In Hazardous waste site remediation (pp. 27–46). Routledge. https://doi.org/10.1201/9780203752265

  117. [117] López, P. O., Rajan, G., & Podgorsak, E. B. (2005). Radiation protection and safety in radiotherapy. In Radiation oncology physics: A handbook for teachers and students (pp. 604–605). Citeseer. https://B2n.ir/uw9786

  118. [118] Jones, C. G. (2019). The US nuclear regulatory commission radiation protection policy and opportunities for the future. Journal of radiological protection, 39(4), R51. https://doi.org/10.1088/1361-6498/ab1d75

  119. [119] Udoh, V. E., Ekanem, I. I., & Ikpe, A. E. (2024). A review of welding and fabrication processes and resulting impacts on environmental sustainability: Risk and control measures. Risk assessment and management decisions, 1(1), 142–153. https://doi.org/10.48314/ramd.v1i1.40

  120. [120] Karim, R., & Lee, E. Y. J. (2023). The global quest for nuclear safety, security, safeguard, and liability: An analysis of international legal and regulatory framework for nuclear energy. In Navigating nuclear energy lawmaking for newcomers: An Asian perspective (pp. 59–99). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-5708-8_3

  121. [121] Helperin, A. N., Beckman, D. S., Inwood, D., Ledwith, V., & Blankenburg, W. (2001). California’s contaminated groundwater. Natural resources defense council, 4, 3–18. https://B2n.ir/rt4188

Published

2024-12-20

How to Cite

An Appraisal on the Dynamics of Radionuclides Contamination Matrix: A Generic Review of Radioactive Assessment in Environmental Health. (2024). Annals of Healthcare Systems Engineering, 1(1), 29-50. https://doi.org/10.22105/ahse.v1i1.24