The Neutrosophic Approach in Health Crisis Management: Optimal Decision-Making Under Uncertainty and Conflicting Data
Abstract
This research presents an innovative neutrosophic decision-making model for selecting the best option under uncertainty and conflicting data conditions. The model uses neutrosophic sets to determine the truth, falsehood, and indeterminacy values for each option and criterion, enabling optimal decision-making by applying appropriate weights. As a case study, a hypothetical scenario for selecting the best solution to address a health crisis is examined. In this scenario, three proposed options are evaluated based on cost, social impact, and implementation time criteria, and the optimal option is identified through mathematical calculations. The results demonstrate that the proposed model exhibits high accuracy in analyzing complex and uncertain conditions and can be applied in various decision-making domains.
Keywords:
Neutrosophic decision-making, Health crisis, Disease outbreak management, Uncertainty, Conflicting dataReferences
- [1] Liu, Y., Lee, J. M., & Lee, C. (2020). The challenges and opportunities of a global health crisis: The management and business implications of COVID-19 from an Asian perspective. Asian business & management, 19(3), 277. https://doi.org/10.1057/s41291-020-00119-x
- [2] Gui, X., Kou, Y., Pine, K. H., & Chen, Y. (2017). Managing uncertainty: Using social media for risk assessment during a public health crisis. Proceedings of the 2017 CHI conference on human factors in computing systems (pp. 4520–4533). Association for computing machinery. https://doi.org/10.1145/3025453.3025891
- [3] Wang, R. (2024). Preference robust ordinal priority approach with preference elicitation under incomplete information for multi-attribute robust ranking and selection. https://doi.org/10.48550/arXiv.2412.12690
- [4] Von Eschenbach, W. J. (2021). Transparency and the black box problem: Why we do not trust AI. Philosophy & technology, 34(4), 1607–1622. https://doi.org/10.1007/s13347-021-00477-0
- [5] Chan, T., Oswald, A., Hauer, K. E., Caretta-Weyer, H. A., Nousiainen, M. T., Cheung, W. J., & Collaborators, I. (2021). Diagnosing conflict: Conflicting data, interpersonal conflict, and conflicts of interest in clinical competency committees. Medical teacher, 43(7), 765–773. https://doi.org/10.1080/0142159X.2021.1925101
- [6] Poorramezan, M. (2024). Crisis leadership in the healthcare organization: Exploring strategies for leading through adversity and uncertainty [Thesis]. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1870769&dswid=8120
- [7] Yaqoob, I., Salah, K., Jayaraman, R., & Al-Hammadi, Y. (2022). Blockchain for healthcare data management: Opportunities, challenges, and future recommendations. Neural computing and applications, 34(14), 11475–11490. https://doi.org/10.1007/s00521-020-05519-w
- [8] Lentz, E. C., & Maxwell, D. (2022). How do information problems constrain anticipating, mitigating, and responding to crises? International journal of disaster risk reduction, 81, 103242. https://doi.org/10.1016/j.ijdrr.2022.103242
- [9] Vafadarnikjoo, A., & Scherz, M. (2021). A hybrid neutrosophic-grey analytic hierarchy process method: Decision-making modelling in uncertain environments. Mathematical problems in engineering, 2021(1), 1239505. https://doi.org/10.1155/2021/1239505
- [10] Jdid, M., Shahin, B., & Al Suleiman, F. (2022). Important neutrosophic rules for decision-making in the case of uncertain data. International journal of neutrosophic science, 18(3), 166–176. https://doi.org/10.54216/IJNS.1803014
- [11] Lotfi, F. H., Allahviranloo, T., Pedrycz, W., Shahriari, M., Sharafi, H., & Razipour-GhalehJough, S. (2023). Fuzzy decision analysis: Multi attribute decision making approach. Springer. http://dx.doi.org/10.1007/978-3-031-44742-6
- [12] Develaki, M. (2024). Uncertainty, risk, and decision-making: Concepts, guidelines, and educational implications. Science & education, 1–32. https://doi.org/10.1007/s11191-024-00544-w
- [13] Kamran, M., Ashraf, S., Kalim, K. S., Hussain, K. A., Zardi, H., & Mehmood, S. (2024). Integrated decision-making framework for hospital development: A single-valued neutrosophic probabilistic hesitant fuzzy approach with innovative aggregation operators. Yugoslav journal of operations research, 34(3), 515–550. https://doi.org/10.2298/YJOR230915034K
- [14] Heredia, M. E. E., Andachi, J. W. S., García Arias, N., & Yaman, S. (2024). Enhancing decision-making in complex environments: Integrating AHP, Delphi, and Neutrosophic Logic. International journal of neutrosophic science (IJNS), 24(2). https://doi.org/10.54216/IJNS.240206
- [15] Salama, A. A., Khalid, H. E., & Mabrouk, A. G. (2024). Unveiling uncertainty: Neutrosophic set-based algorithms for robust decision-making. Neutrosophic sets and systems, 72, 222–243. http://dx.doi.org/10.5281/zenodo.13381954
- [16] Stanton, M. C. B., & Roelich, K. (2021). Decision making under deep uncertainties: A review of the applicability of methods in practice. Technological forecasting and social change, 171, 120939. https://doi.org/10.1016/j.techfore.2021.120939
- [17] Rydmark, J., Kuylenstierna, J., & Tehler, H. (2021). Communicating uncertainty in risk descriptions: The consequences of presenting imprecise probabilities in time critical decision-making situations. Journal of risk research, 24(5), 629–644. https://doi.org/10.1080/13669877.2020.1801807
- [18] Seifbarghy. M., & Yousefi, M. (2024). Supplier selection using a combination of qualitative performance development and evaluation at a distance from average solutions in a neutrosophic environment. Industrial management studies, 22(73), 57-98. (In Persian). https://doi.org/10.22054/jims.2024.79614.2914
- [19] Abbas, J., Wang, D., Su, Z., & Ziapour, A. (2021). The role of social media in the advent of COVID-19 pandemic: Crisis management, mental health challenges and implications. Risk management and healthcare policy, 1917–1932. https://doi.org/10.2147/RMHP.S284313
- [20] Sahoo, S. K., & Goswami, S. S. (2023). A comprehensive review of multiple criteria decision-making (MCDM) methods: Advancements, applications, and future directions. Decision making advances, 1(1), 25–48. https://doi.org/10.31181/dma1120237
- [21] Thakkar, J. J. (2021). Multi-criteria decision making. Springer. https://doi.org/10.1007/978-981-33-4745-8
- [22] Al Awadh, M. (2022). Utilizing multi-criteria decision making to evaluate the quality of healthcare services. Sustainability, 14(19), 12745. https://doi.org/10.3390/su141912745
- [23] Acciarini, C., Brunetta, F., & Boccardelli, P. (2021). Cognitive biases and decision-making strategies in times of change: A systematic literature review. Management decision, 59(3), 638–652. https://doi.org/10.1108/MD-07-2019-1006
- [24] Berthet, V. (2022). The impact of cognitive biases on professionals’ decision-making: A review of four occupational areas. Frontiers in psychology, 12, 802439. https://doi.org/10.3389/fpsyg.2021.802439%0A%0A
- [25] Garcia, A., & Adams, J. (2022). Data-driven decision making: Leveraging analytics and AI for strategic advantage. Research studies of business, 1(02), 77–85. http://researchstudiesbusiness.com/index.php/Journal/article/view/9%0A
- [26] Yung, K. K., Ardern, C. L., Serpiello, F. R., & Robertson, S. (2022). A framework for clinicians to improve the decision-making process in return to sport. Sports medicine-open, 8(1), 52. https://doi.org/10.1186/s40798-022-00440-z
- [27] Pascarella, G., Rossi, M., Montella, E., Capasso, A., De Feo, G., Botti, G., … ., & Morabito, A. (2021). Risk analysis in healthcare organizations: Methodological framework and critical variables. Risk management and healthcare policy, 2897–2911. https://doi.org/10.2147/RMHP.S309098
- [28] Prataviera, E., Vivian, J., Lombardo, G., & Zarrella, A. (2022). Evaluation of the impact of input uncertainty on urban building energy simulations using uncertainty and sensitivity analysis. Applied energy, 311, 118691. https://doi.org/10.1016/j.apenergy.2022.118691
- [29] Orru, K., Klaos, M., Nero, K., Gabel, F., Hansson, S., & Nævestad, T. O. (2023). Imagining and assessing future risks: A dynamic scenario-based social vulnerability analysis framework for disaster planning and response. Journal of contingencies and crisis management, 31(4), 995–1008.
- [30] Vaezi, R., Mirzaei, A., & Pooramini, Z. (2021). Corona Crisis: Iran in examination a comparative approach. Iranian journal of management sciences, 16(62), 117-146. (In Persian). https://journal.iams.ir/article_353_en.html?lang=fa
- [31] Labaf, A., Jalili, M., Jaafari Pooyan, E., & Mazinani, M. (2021). Management of Covid-19 Crisis in Tehran University of Medical Sciences Hospitals: Challenges and Strategies. Sjsph, 18(4), 355–372. http://sjsph.tums.ac.ir/article-1-5962-en.html
- [32] Shambayati, H., & Qahremani, F. (2024). Factors affecting the adoption of digital technology in the healthcare value chain in neutrosophic conditions in Semnan province. Strategic value chain management, 1(1), 51–71. https://doi.org/10.22075/svcm.2025.35409.1012
- [33] Drnovšek, R., Milavec Kapun, M., Šteblaj, S., & Rajkovič, U. (2025). Multicriteria risk evaluation model: Utilizing fuzzy logic for improved transparency and quality of risk evaluation in healthcare. Risk management and healthcare policy, 637–653. https://doi.org/10.2147/RMHP.S490598
- [34] Ding, J., Zhang, C., Li, D., Zhan, J., Li, W., & Yao, Y. (2024). Three-way decisions in generalized intuitionistic fuzzy environments: Survey and challenges. Artificial intelligence review, 57(2), 38. https://doi.org/10.1007/s10462-023-10647-5
- [35] Paraskevas, A., & Madas, M. (2024). New multi-criteria decision making technique based on neutrosophic QUALIFLEX method. Neutrosophic sets and systems, 73, 74–85. https://fs.unm.edu/nss8/index.php/111/article/download/5016/2077
- [36] Karunarathna, I., Gunasena, P., Hapuarachchi, T., & Gunathilake, S. (2024). Comprehensive data collection: Methods, challenges, and the importance of accuracy. Uva clinical research, 1–24. http://dx.doi.org/10.13140/RG.2.2.13134.47689
- [37] Mortazavi, S. M., Sadeghi-Bazargani, H., Charkhabi, S. A., Rasoulzadeha, Y., & Nadrian, H. (2024). A qualitative study on apparent and latent contributing factors to driving errors in Iran. Scientific reports, 14(1), 21127. https://doi.org/10.1038/s41598-024-71833-1
- [38] Penev, Y. P., Buchanan, T. R., Ruppert, M. M., Liu, M., Shekouhi, R., Guan, Z., … ., & Bihorac, A. (2024). Electronic health record data quality and performance assessments: Scoping review. JMIR medical informatics, 12(1), e58130. https://doi.org/10.2196/58130
- [39] Aruldoss, M., Lakshmi, T. M., & Venkatesan, V. P. (2013). A survey on multi criteria decision making methods and its applications. American journal of information systems, 1(1), 31–43. https://doi.org/10.12691/AJIS-1-1-5
- [40] Nabeeh, N. A., Abdel-Basset, M., El-Ghareeb, H. A., & Aboelfetouh, A. (2019). Neutrosophic multi-criteria decision making approach for iot-based enterprises. IEEE access, 7, 59559–59574. https://doi.org/10.1109/ACCESS.2019.2908919