Development of a Multiprocessing Interface Genetic Algorithm for Optimising a Multilayer Perceptron for Disease Prediction

Authors

https://doi.org/10.22105/ahse.v2i2.36

Abstract

Accurate disease diagnosis enhances effective patient management; however, manual interpretation of complex biomedical data is time-consuming and vulnerable to error. Artificial Intelligence (AI) systems, particularly Machine Learning (ML) models, can automatically learn complex patterns from high-dimensional clinical and imaging data. The predictive performance of these methods depends critically on proper hyperparameter tuning. This study introduces a framework that integrates nonlinear feature extraction, classification, and efficient optimisation. First, kernel principal component analysis with a radial basis function kernel reduces dimensionality while preserving 95% of the variance. Second, a Multilayer Perceptron (MLP) learns to predict disease status. Finally, a modified Multiprocessing Interface Genetic Algorithm (MIGA) optimises MLP hyperparameters in parallel over ten generations. We evaluated this approach on three datasets: The Wisconsin Diagnostic Breast Cancer dataset, the Parkinson’s Telemonitoring dataset, and the Chronic Kidney Disease (CKD) dataset. The MLP tuned by the MIGA achieved the best accuracy of 99.12% for breast cancer, 94.87% for Parkinson’s Disease (PD), and 100% for CKD. These results outperform those of other methods, such as grid search, random search, and Bayesian optimisation. Compared to a standard Genetic Algorithm (GA), Kernel Principal Component Analysis (Kernel PCA) revealed nonlinear relationships that improved classification, and the MIGA’s parallel fitness evaluations reduced the tuning time by approximately 60%. The GA incurs a high computational cost due to the sequential nature of fitness evaluations. Still, our MIGA parallelizes this step, significantly reducing the tuning time and steering the MLP toward the best accuracy scores of 99.12%, 94.87%, and 100% for breast cancer, Parkinson's, and CKD, respectively. The built-in graphical user interface then enables clinicians to load data, reduce dimensions, tune hyperparameters, and run predictions without writing code, paving the way for rapid and real-world adoption.

Keywords:

Multilayer perceptron, Multiprocessing interface genetic algorithm, Hyperparameter optimization, Kernel principal component analysis, Parallel processing

References

  1. [1] Ganie, S. M., Dutta Pramanik, P. K., Mallik, S., & Zhao, Z. (2023). Chronic kidney disease prediction using boosting techniques based on clinical parameters. Plos one, 18(12), e0295234. https://doi.org/10.1371/journal.pone.0295234

  2. [2] Arif, M. S., Rehman, A. U., & Asif, D. (2024). Explainable machine learning model for chronic kidney disease prediction. Algorithms, 17(10), 443. https://doi.org/10.3390/a17100443

  3. [3] Iliyas, I. I., Boukari, S., & Ya, A. (2024). A proposed multilayer perceptron model and kernel principal analysis component for the prediction of chronic kidney disease. International journal of artificial intelligence, 11(2), 99–113. https://doi.org/10.36079/lamintang.ijai-01102.783

  4. [4] Bischl, B., Richter, J., Becker, M., Binder, M., & Pielok, T. (2023). Hyperparameter optimization : Foundations , algorithms , best practices , and open challenges, 13(2), 1–43. https://doi.org/10.1002/widm.1484

  5. [5] Hernández-Morales, A., Van Nieuwenhuyse, I., & Gonzalez, R. S. (2023). A survey on multi objective hyperparameter optimization algorithms for machine learning. Artif intell rev, 56, 8043–8093. https://doi.org/10.1007/s10462-022-10359-2

  6. [6] Javaid, M., Haleem, A., Haleem, I., & Suman, R. (2023). Advanced Agrochem Understanding the potential applications of Artificial Intelligence in Agriculture Sector. Advanced agrochem, 2(1), 15–30. https://doi.org/10.1016/j.aac.2022.10.001

  7. [7] Ghezelbash, R., Maghsoudi, A., Shamekhi, M., Pradhan, B., & Daviran, M. (2022). Genetic algorithm to optimize the SVM and K -means algorithms for mapping of mineral prospectivity. Neural computing and applications, 35, 719–733. https://doi.org/10.1007/s00521-022-07766-5

  8. [8] Rodrigues, L. F., Backes, A. R., Travençolo, B. A. N., & de Oliveira, G. M. B. (2022). Optimizing a deep residual neural network with genetic algorithm for acute lymphoblastic leukemia classification. Journal of digital imaging, 35, 623–637. https://doi.org/10.1007/s10278-022-00600-3

  9. [9] Kaur, B. P., Id, H. S., Hans, R., Sharma, S. K., Sharma, C., & Id, M. H. (2024). A Genetic algorithm aided hyper parameter optimization based ensemble model for respiratory disease prediction with explainable AI. Plos one, 19(12), e0308015. https://doi.org/10.1371/journal.pone.0308015

  10. [10] Liu, K., Gu, Y., Tang, L., Du, Y., Zhang, C., & Zhu, J. (2025). Random forest grid fault prediction based on genetic algorithm optimization, 13, 1480749. https://doi.org/10.3389/fphy.2025.1480749

  11. [11] Guido, R., Carmela, M., & Domenico, G. (2023). A hyper-parameter tuning approach for cost-sensitive support vector machine classifiers. Soft computing, 27(18), 12863–12881. https://doi.org/10.1007/s00500-022-06768-8

  12. [12] El-Hassani, F. Z., Amri, M., Joudar, N. E., & Haddouch, K. (2024). A new optimization model for MLP hyperparameter tuning: Modeling and resolution by real-coded genetic algorithm. Neural processing letters, 56(2), 1–31. https://doi.org/10.1007/s11063-024-11578-0

  13. [13] Ranga, P., Terlapu, V., Jayaram, D., Rakesh, S., & Gopalachari, M. V. (2023). Optimizing chronic kidney disease diagnosis in uddanam : A smart fusion of GA-MLP hybrid and PCA dimensionality reduction. Procedia computer science, 230(2023), 522–531. https://doi.org/10.1016/j.procs.2023.12.108

  14. [14] Iliyas, I. I., Boukari, S., & Ya, A. (2025). Recent trends in prediction of chronic kidney disease using different learning approaches : A systematic literature review. Journal of medical artificial intelligence, 8. https://doi.org/10.21037/jmai-24-256

  15. [15] Arif, S. M., Mukheimer, A., & Asif, D. (2023). Enhancing the early detection of chronic kidney disease : A robust machine learning model. Big data and cognitive computing, 7, 144. https://doi.org/10.3390/bdcc7030144

  16. [16] Rubini, L., Soundarapandian, P., & Eswaran, P. (2015). Chronic kidney disease [Dataset]. UCI machine learning repository. https://doi.org/10.24432/C5G020.

  17. [17] Doumari, S. A., Berahmand, K., & Ebadi, M. J. (2023). Early and high-accuracy diagnosis of parkinson’ s disease : Outcomes of a new model. Computational and mathematical methods in medicine, 2023(1), 1493676. https://doi.org/10.1155/2023/1493676

  18. [18] Kumar, G. S., Suganya, E., Sountharrajan, S., & Balusamy, B. (2025). OPEN SRADHO : Statistical reduction approach with deep hyper optimization for disease classification using artificial intelligence. Scien, 15(1), 1245. https://doi.org/10.1038/s41598-024-82838-1

  19. [19] Ali, L., Zhu, C. E., & Zhang, Z. (2019). Automated detection of parkinson’ s disease based on multiple types of sustained phonations using linear discriminant analysis and genetically optimized neural network. IEEE journal of translational engineering in health and medicine, 7, 1–10. https://doi.org/10.1109/JTEHM.2019.2940900

  20. [20] Ukani, V. (2020). Parkinson’s disease data set.

  21. [21] Islam, T., Sheakh, M.A., Tahosin, M.S., … ., & Bourhia, M. (2024). Predictive modeling for breast cancer classification in the context of Bangladeshi patients by use of machine learning approach with explainable AI. Sci Rep, 14. https://doi.org/10.1038/s41598-024-57740-5

  22. [22] Michael, E., Ma, H., Li, H., & Qi, S. (2022). An optimized framework for breast cancer classification using machine learning. BioMed research internation, 2022(1), 8482022. https://doi.org/10.1155/2022/8482022

  23. [23] Aguerchi, K., Jabrane, Y., Habba, M., Hajjam, A., & Hassani, E. (2024). A CNN hyperparameters optimization based on particle swarm optimization for mammography breast cancer classification. Journal of imaging, 10(2), 30. https://doi.org/10.3390/jimaging10020030

  24. [24] Wolberg, W., Mangasarian, O., Street, N., & Street, W. (1993). Breast cancer wisconsin (Diagnostic) [Dataset]. UCI machine learning repository. https://doi.org/10.24432/C5DW2B.

  25. [25] Woodman, R.J., Mangoni, A.A. (2023). A comprehensive review of machine learning algorithms and their application in geriatric medicine: Present and future. Aging clin exp res, 35(11), 2363–2397. https://doi.org/10.1007/s40520-023-02552-2

  26. [26] Deighan, D. S., Field, S. E., Capano, C. D., Khanna, G., & Field, S. E. (2021). Genetic-algorithm-optimized neural networks for gravitational wave classification. Neural computing and applications manuscript, 33, 13859–13883. https://doi.org/10.1007/s00521-021-06024-4

  27. [27] Ojha, V., Timmis, J., & Nicosia, G. (2022). Assessing ranking and effectiveness of evolutionary algorithm hyperparameters using global sensitivity analysis methodologies. Swarm and evolutionary computation, 74, 101130. https://doi.org/10.1016/j.swevo.2022.101130

  28. [28] Zhu, J., Zhao, Z., Yin, B., Wu, C., Yin, C., & Chen, R. (2025). An integrated approach of feature selection and machine learning for early detection of breast cancer, Scientific reports, 15(1), 13015. https://doi.org/10.1038/s41598-025-97685-x

  29. [29] Swain, D., Mehta, U., Bhatt, A., Patel, H., Patel, K., Mehta, D., … ., & Manika, S. (2023). A robust chronic kidney disease classifier using machine learning. Electronics, 12(212), 1–13. https://doi.org/ 10.3390/electronics12010212

  30. [30] Elshewey, A. M., Shams, M. Y., El-Rashidy, N., Elhady, A. M., Shohieb, S. M., & Tarek, Z. (2023). Bayesian optimization with support vector machine model for parkinson disease classification. Sensor, 23(4), 2085. https://doi.org/10.3390/s23042085

Published

2025-05-07

How to Cite

Ibrahim Iliyas, I. ., Boukari, S. ., & Ya’u Gital, A. . (2025). Development of a Multiprocessing Interface Genetic Algorithm for Optimising a Multilayer Perceptron for Disease Prediction. Annals of Healthcare Systems Engineering, 2(2), 87-99. https://doi.org/10.22105/ahse.v2i2.36

Similar Articles

You may also start an advanced similarity search for this article.